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Fig. 1. A complex multiphysics simulation involving viscoelastic fluids, rigid bodies, and deformable bodies. We simulate whipped cream and strawberry
syrup e�iciently using our novel viscoelasticity model based on conformation constraints. The complete scene consists of 150,000 particles and runs at 1.13
seconds per frame.

�e simulation of high viscoelasticity poses important computational
challenges. One is the di�culty to robustly measure strain and its derivatives
in a medium without permanent structure. Another is the high sti�ness of
the governing di�erential equations. Solutions that tackle these challenges
exist, but they are computationally slow. We propose a constraint-based
model of viscoelasticity that enables e�cient simulation of highly viscous
and viscoelastic phenomena. Our model reformulates, in a constraint-based
fashion, a constitutive model of viscoelasticity for polymeric �uids, which
de�nes simple governing equations for a conformation tensor. �e model
can represent a diverse pale�e of materials, spanning elastoplastic, highly
viscous, and inviscid liquid behaviors. In addition, we have designed a con-
strained dynamics solver that extends the position-based dynamics method
to handle e�ciently both position-based and velocity-based constraints. We
show results that range from interactive simulation of viscoelastic e�ects to
large-scale simulation of high viscosity with competitive performance.
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1 INTRODUCTION
Many real-world substances and materials exhibit a viscous �uid or
viscoelastic behavior. As a result, the simulation of viscoelastic �u-
ids has a�racted important a�ention in computer graphics [Bargteil
et al. 2007; Ba�y and Bridson 2008; Carlson et al. 2002; Goktekin
et al. 2004; Larionov et al. 2017; O’Brien et al. 2002; Paiva et al. 2009;
Peer et al. 2015; Ram et al. 2015; Takahashi et al. 2015; Terzopoulos
and Fleischer 1988; Wojtan and Turk 2008; Yue et al. 2015]. Simu-
lation of high viscosity is a computationally challenging problem,
since it requires implicit formulations in order to robustly solve
the numerically sti� di�erential equations. In addition, due to the
di�culty in computing the strain of a �uid, numerical dri� turns
into perceptible loss of viscoelasticity.

A common alternative to the solution of sti� equations is to model
sti� properties as constraints, thereby e�ectively removing degrees
of freedom from the simulation. Constrained dynamics formulations
have proven successful for the simulation, among others, of articu-
lated bodies [Bara� 1996], contact [Bara� 1989; Kaufman et al. 2008],
deformation limits [Wang et al. 2010], inextensibility [Goldenthal
et al. 2007], volume preservation for solids [Irving et al. 2007], �uid
incompressibility [Foster and Metaxas 1996; Macklin and Müller
2013; Solenthaler and Pajarola 2009], or even generic dynamic de-
formations [Bender et al. 2014; Müller et al. 2006; Stam 2009].

In this paper, we propose a constraint-based solution for �uid
viscoelasticity. Our solution is inspired by a constitutive model of
polymeric �uids (i.e., �uids where elastic polymers are dissolved),
which supports a large range of viscoelasticity behaviors under one
common formulation [Deshpande et al. 2010]. We describe the state
of the �uid using a conformation tensor, which is evolved in time
as a function of the ratio between elastic and viscous forces. By
enforcing implicit, velocity-based constraints on the conformation
tensor, as described in Section 3, we achieve high viscoelasticity.
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Using just two intuitive physically based parameters, the artist may
choose from a pale�e of materials that range between elastoplastic,
highly viscous �uid, and inviscid liquid.

With our constraint-based viscoelasticity model, simulation e�-
ciency is determined by the choice of constrained dynamics solver.
In Section 4, we propose a doubly constrained position-based dynam-
ics (DC-PBD) solver, which inherits the robustness under constraint
nonlinearity and the per-iteration e�ciency of the original PBD
method [Müller et al. 2006], but exhibits improved stability under
velocity-based constraints, such as those in our viscoelasticity for-
mulation, especially with large time steps. As a corollary, while
others have also accounted for viscosity in PBD solvers [Alduán
et al. 2016; Macklin and Müller 2013; Takahashi et al. 2016, 2014],
our method is derived from a constitutive model, hence it allows
physics-based parameterization. Its range of behaviors is also supe-
rior, comparable to the one obtained with methods that also compute
viscoelastic stress from a discretization of constitutive models, albeit
at a much lower computational cost. In Section 5, we describe in
detail the integration of our viscoelasticity formulation in a position-
based �uids (PBF) model [Macklin and Müller 2013].

We show results that range from interactive simulation of vis-
coelastic e�ects (Fig. 10) to large-scale simulation of high viscos-
ity with competitive performance (Fig. 11). �e materials exhibit
the classic buckling and coiling e�ects produced by viscoelastic-
ity (Fig. 9), and we also show how our method can be integrated
seamlessly in rich multiphysics scenarios (Fig. 1).

2 RELATED WORK
�e modeling and simulation of complex �uid e�ects has been a
topic of research in computer graphics for many years. �e dynam-
ics of complex �uids, those that exhibit high viscosity or nonlinear
strain-stress relationships, have caught the interest of several re-
searchers, as many interesting e�ects and behaviors are unique to
these types of �uids.

�e �rst a�empts to model such e�ects relied on grid-based dis-
cretizations [Terzopoulos and Fleischer 1988]. Carlson et al. [2002]
simulated highly viscous �uid materials and melting e�ects using
an implicit viscosity formulation over a Marker-and-Cell (MAC) ap-
proach. Goktekin et al. [2004] extended the Navier-Stokes equations
incorporating elastic and plastic terms to simulate viscoelastic �uids
over a level-set discretization. Ba�y and Bridson [2008] designed
an accurate method for the simulation of characteristic e�ects in
free-surface viscous �uids, such as buckling and coiling. �ey em-
phasized the formulation of correct boundary conditions, outlined a
variational formulation of viscosity, and designed an e�cient solver.
Wojtan and Turk [2008] enabled the preservation of thin viscoelas-
tic features in �nite element simulations. Recently, Larionov et
al. [2017] have proposed an implicit Stokes solver to simulate highly
viscous Newtonian �uids also using a grid-based discretization. �e
focus of these methods has been to enable complex e�ects, without
particular a�ention to computational performance.

Some works have designed solutions optimized for the simula-
tion of speci�c viscosity e�ects. Bergou et al. [2010] and Ba�y et
al. [2012] focused on the simulation of viscous threads and thin lay-
ers, respectively. Remeshing strategies helped them preserve thin
surfaces and reduce the simulation cost. Zhu et al. [2015] simulated

viscous e�ects on features of di�erent dimensions, all handled in
a uniform manner. �ey achieved high-quality simulation of very
thin features for non-Newtonian �uids.

�e Material Point Method (MPM) has recently gained a�ention
for the simulation of various e�ects and materials, including vis-
coelasticity. It can be regarded as a particle-based method, although
it uses a background grid for certain computations. Stomakhin et
al. [2013] �rst applied it to snow simulation, and later they extended
it to phase changes and high viscosity [Stomakhin et al. 2014]. Ram
et al. [2015] used the MPM formalism to simulate viscoelastic mate-
rials, while Yue et al. [2015] applied it for the simulation of foam.
More recently, this method has been applied to the simulation of
sand [Daviet and Bertails-Descoubes 2016; Klár et al. 2016] and
the interaction between sand and water [Tampubolon et al. 2017].
While MPM has gained popularity due to its high-quality results, it
is computationally intensive.

Particle-based discretizations o�er the ability to simulate highly-
deformable materials and thin features with good computational
performance. �e smoothed particle hydrodynamics (SPH) dis-
cretization is one example. Solenthaler et al. [2007] proposed a
uni�ed model to simulate melting and solidi�cation e�ects. �ey in-
corporated an elastic force term based on a strain measure, inspired
by the previous work of Müller et al. [2004]. Paiva et al. [2006; 2009]
used an XSPH velocity correction to simulate non-Newtonian �uids,
which has been extended by Andrade et al. [2015] to reproduce
buckling in Newtonian viscous �uids. Chang et al. [2009], on the
other hand, used an SPH discretization of the elastic strain tensor
to simulate viscoelastic behavior. He et al. [2012] used the SPH
approximation to solve the Poisson equation locally and simulate
moderately viscous �uids. Granular media can be considered a spe-
cial type of non-Newtonian �uid. Lenaerts et al. [2009] extended
the work of Solenthaler et al. [2007] to simulate granular behavior,
and Alduan and Otaduy [2011] proposed strain-rate-based models
for granular friction and cohesion e�ects.

Recently, several authors have designed implicit SPH solvers for
the simulation of highly viscous �uids. Bender and Koshier [2017]
propose a divergence-free SPH solver that also supports viscous
materials. Takahashi et al. [2015] enforce incompressibility in simu-
lations with high viscosity by solving for pressure implicitly. Peer et
al. [2015] simulate high viscosity by canceling shear rate in a least
squares manner. For each particle, they set a goal velocity gradient
that cancels the local shear rate, and they solve for the velocity �eld
that best matches the goal velocity gradients. Even though their
method computes the velocity �eld very e�ciently, we propose an
even more e�cient and versatile solution, which handles larger
time steps thanks to a PBD-style constrained dynamics solver, and
supports more diverse viscoelastic behaviors. Peer et al. [2017] have
later extended their method to improve vorticity handling.

�e addition of elastic e�ects to viscosity simulations requires
in principle knowledge of undeformed con�gurations to simplify
the computation of deformation metrics. However, maintaining
this knowledge becomes complicated under plastic �ow. Clavet et
al. [2005] used a spring-based approach to apply elastic forces in a
particle-based �uid simulation, with a strategy to create and remove
elastic links between particles as the particle neighborhoods evolve.
Gerszewski et al. [2009] introduced instead an approach to measure
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Fig. 2. We drop a block of highly viscous material on the ground using
our method (le�) and the viscous PBF method of Takahashi et al. [2014]
(right). Their method models viscosity using length constraints, which fail
to prevent dri� without su�ering unwanted elastic oscillations.

deformation that does not require an explicit undeformed con�gu-
ration in a Lagrangian plastic �ow model. Our viscoelasticity model
also avoids the explicit de�nition of undeformed con�gurations,
thanks to a conformation tensor whose time evolution is reduced to
the solution of a �rst-order system. Nevertheless, our formulation
reproduces a larger pale�e of viscoelastic materials.

Another particle-based alternative for the simulation of �uids
is the PBF model [Macklin and Müller 2013]. It builds on a SPH
discretization of �uid quantities, formulates incompressibility as
density constraints, and solves for particle positions directly using
the PBD constrained dynamics solver [Müller et al. 2006]. Taka-
hashi et al. [2014] have proposed the treatment of viscosity in the
context of PBF. �ey de�ne particle links similar to those of Clavet
et al. [2005] to describe the local material structure, addressing also
elasticity and volume conservation [Takahashi et al. 2016]. We have
tested the ability of their model to enforce high viscosity, and we
have found that it fails to prevent dri� without su�ering unwanted
elastic oscillations, as shown in Fig. 2 and the accompanying video.
We have also considered integrating and implicit particle-based vis-
cosity formulation within PBF, in particular the approach of Peer et
al. [2015]. However, this combination su�ers from excessive dri�,
as shown in Fig. 3, because constraints are applied on velocities, but
not on positions directly.

3 CONSTRAINT-BASED VISCOELASTICITY
In this section, we introduce our constraint-based model of vis-
coelasticity. We �rst describe a constitutive model of viscoelasticity
in polymeric �uids, which is the stress-based counterpart for our
constraint-based formulation. �en, we describe the derivation of
implicit conformation constraints acting on �uid velocities, as well
as the parameters of our model.

3.1 Constitutive Model of Polymer Conformation
In polymeric �uids, the dissolved polymer endows the �uid with
viscoelastic properties. Due to friction between the �uid and the
polymer, the elasticity of the polymer is transmi�ed to the �uid,
producing the overall viscoelastic behavior [Bird et al. 1977]. �is
behavior can be represented using a constitutive model that relates
viscoelastic stress to the change in a polymer conformation tensor
Q [Deshpande et al. 2010].

Fig. 3. A beam of highly viscous material, rotating around the vertical axis
in absence of external forces, using our method (le�) and a PBF simulation
with a viscosity method based on that of Peer et al. [2015] (right). The
method of Peer et al. constrains velocities successfully, but cannot remove
position dri� in a PBF simulation.

�e polymer conformation model de�nes a reference value Q̄ =
I for the conformation tensor at rest state, and reduces its time
evolution to the solution of a �rst-order system with relaxation time
constant τ = b

k , which amounts to the ratio between the viscous
friction b between the polymer and the �uid, and the sti�ness k
of the polymer. �e �rst-order time evolution of the conformation
tensor is de�ned as:

DQ
Dt
= −

1
τ

(
Q − Q̄

)
. (1)

In this equation, the time evolution of the conformation tensor
is expressed using the upper convected derivative DQ

Dt , which is a
derivative that takes into account local �uid translation and rotation.
It is de�ned as:

DQ
Dt
=

DQ
Dt
− Q∇u − (∇u)T Q, (2)

where DQ
Dt is the standard convective derivative and u is the �uid

velocity.
From (1) and (2), on a Lagrangian se�ing, the conformation tensor

rate can be computed as:
DQ
Dt
= Q∇u + (∇u)T Q −

1
τ

(
Q − Q̄

)
. (3)

�e constitutive model of polymeric �uids is complete with the
de�nition of the viscoelastic stress σ as:

σ = k c s
(
Q − Q̄

)
, (4)

where s is a scale factor that depends on the geometry and structure
of the polymer, c is the polymer concentration, andk is the polymer’s
sti�ness, as mentioned above. �is sti�ness is typically a function
of temperature.

By plugging the viscoelastic stress into the equation of �uid
momentum conservation, we would obtain an upper convected
Maxwell model for a polymeric �uid [Deshpande et al. 2010]. Instead,
we formulate viscoelasticity as a constraint on the conformation
tensor, as we show next.

3.2 Implicit Conformation Constraint
To model high viscoelasticity, we propose a constraint that preserves
the rest-state value of the conformation tensor, i.e.,

C(Q) = Q − Q̄ = Q − I = 0. (5)
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Fig. 4. Viscoelastic cubes are dropped on the ground. By varying two physics-based parameters, the conformation relaxation time constant τ and the
compliance α , we achieve materials that bounce elastically (yellow), appear highly viscous (magenta), or splash as an inviscid liquid (cyan).

On each simulation step, we wish to enforce this constraint im-
plicitly, i.e., on the simulation state at the end of the time step. We
do this by combining the constraint equation (5) with implicit in-
tegration of the conformation tensor rate (3). We denote with a
superscript 0 variables at the beginning of the time step, e.g., Q0 is
the conformation tensor at the beginning of the time step. �en,
the conformation tensor at the end of the time step can be obtained
through implicit Euler integration of (3), by solving:

Q − Q0

∆t
= Q∇u + (∇u)T Q −

1
τ

(
Q − Q̄

)
. (6)

Plugging the tensor constraint (5) in this equation, we obtain an
implicit conformation constraint on �uid velocities:

C(u) = Q0 − Q̄ + ∆t
(
∇u + (∇u)T

)
= 0. (7)

Our simulation loop for viscoelastic �uids proceeds on each time
step by computing a dynamic update subject to the implicit velocity-
based constraint (7). For this purpose, we use the constrained dy-
namics solver proposed in Section 4. At the end of each time step,
we update the conformation tensor by solving for Q in (6). In the
particular case when τ → 0, we simply set the tensor to be Q = I.

�e relaxation time τ a�ects the viscoelasticity behavior of the
�uid. As τ → 0, the internal elastic forces of the polymer dominate
over friction forces with the �uid (k � b), and the polymer recovers
quickly its structure. In the viscoelastic �uid simulation, the confor-
mation tensor Q barely changes over time, and the conformation

constraint (7) becomes e�ectively a null-strain-rate constraint. �e
�uid appears highly viscous. Conversely, as τ → ∞, the friction
forces of the polymer with the �uid dominate over its internal elastic
forces (b � k), and the polymer fails to recover its structure. In
the viscoelastic �uid simulation, the conformation tensor Q varies
over time as a result of the strain rate according to (3), and the
conformation constraint (7) acts on �uid velocities to remove the
existing conformation change. �e �uid appears elastic.

In the constitutive model of polymer conformation, the viscoelas-
tic stress depends also on a compliance α = 1

k c s according to (4).

α

τ
0 ∞0

∞
Fluid

Viscous ElasticLater in Section 5, we show how to
incorporate this compliance into our
constrained dynamics solver as a re-
laxation coe�cient for the conforma-
tion constraint (7). �e compliance α
de�nes the �uidity of the model. With
two physically based parameters, τ
and α , we obtain a pale�e of mate-
rials that spans elastoplastic, highly
viscous, and inviscid �uids, as shown in the inset. �e in�uence of
material parameters on the �uid’s behavior is evidenced even on
simple scenarios, such as impact (Fig. 4) or liquid rope coiling (Fig. 5).
In these examples, material colors are chosen by interpolating the
colors in the inset according to the parameter se�ings. Even on
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ALGORITHM 1: PBD step
Input: Initial state (x0, u0).
Output: Updated state (x, u).

Compute constraint-free state
u∗ ← u0 + ∆t M−1 f(x0)
x∗ ← x0 + ∆t u∗

Project positions
x← project x∗ to Cx(x) = 0
u← x−x0

∆t

moderately complex scenes (more than 10 000 particles), the diverse
materials can be simulated interactively.

4 CONSTRAINED DYNAMICS SOLVER
PBD can be regarded as an integration scheme for constrained
dynamics. In this section, we propose a doubly constrained PBD (DC-
PDB) solver that handles also velocity-based constraints, such as
those in our viscoelasticity model. DC-PBD projects both velocities
and positions to the velocity-based constraints, and in this way
it improves convergence and stability. We start the section with
a summary of the regular PBD solver, and then we describe the
di�erences in our DC-PDB approach.

Fig. 5. We compare liquid rope coiling with di�erent material parameters.
In the top row, varying the compliance α , with relaxation time constant
τ = 0.15 in all cases. In the bo�om row, varying τ , with α = 0 in all cases.
Please see the elastic e�ects in the accompanying video. The examples are
colored by interpolating the material color pale�e shown in Section 3.2.

ALGORITHM 2: DC-PBD step
Input: Initial state (x0, u0).
Output: Updated state (x, u).

Compute constraint-free state
u∗ ← u0 + ∆t M−1 f(x0)
x∗ ← x0 + ∆t u∗

Project velocities
u∗∗ ← project u∗ to Cu(u∗∗) = 0
x∗∗ ← x∗ + ∆t (u∗∗ − u∗)

Project positions
x← project x∗∗ to Cx(x) = 0 and C̃u(x) ≡ Cu

(
x−x0
∆t

)
= 0

u← x−x0
∆t

4.1 PBD Solver
Given a dynamic system with mass M, external forces f , and position-
based constraints Cx, the PBD method executes each simulation
step as follows. Starting from positions and velocities (x0, u0), it
�rst computes a constraint-free state (x∗, u∗) using symplectic Euler
integration. �en, it projects the positions to the constraints, and
computes velocities through �nite di�erences between �nal and
initial positions, to obtain the state (x, u) at the end of the time step.
�e PBD solver is summarized in Algorithm 1.

In PBD, the constraint projection is typically solved using Fast-
Projection Jacobi or Gauss-Seidel iterations. Constraints are lin-
earized a�er each iteration, and Fast Projection implies that, within
each iteration, the projection is computed by minimizing the dis-
tance to the result from the previous iteration, not to the initial
value [Goldenthal et al. 2007; Hairer et al. 2002].

PBD succeeds to robustly and e�ciently model sti� potentials
as position-based constraints. Moreover, the recent XPBD exten-
sion adds relaxation to the constraint projection in order to model
constraint compliance. However, PBD is not naturally designed to
handle e�ciently velocity-based constraints, such as the viscoelas-
ticity constraint (7). In addition, constraint nonlinearity, such as the
one introduced by the SPH kernels used in PBF, may complicate the
convergence of Jacobi or Gauss-Seidel solvers.

4.2 Doubly Constrained PBD
Given the generic dynamic system described above, we propose a
constrained dynamics algorithm that handles both position-based
constraints Cx and velocity-based constraints Cu e�ciently. �e
key di�erence is to project both positions and velocities to the
constraints. A similar idea is applied by the RATTLE algorithm
for molecular dynamics [Andersen 1983], which is a constrained-
dynamics version of the velocity-Verlet integrator. But, unlike RAT-
TLE, we exploit the robustness of PBD by prioritizing the projection
of positions, and computing velocity estimates through �nite di�er-
ences of safe positions.

We start the DC-PBD solver by computing a constraint-free state
(x∗, u∗) using symplectic Euler integration, same as in regular PBD.
�en, we project the velocities to the velocity-based constraints
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Cu, and we update particle positions with the resulting velocity
correction. Altogether, we obtain a velocity-safe state (x∗∗, u∗∗).

To conclude, we compute the �nal, position-safe state (x, u), by
projecting the positions to both the position-based and velocity-
based constraints. To do this, we need to transform the velocity-
based constraints Cu into position-based constraints, which are
added to the regular position-based constraints Cx. We de�ne the
velocities through �nite di�erences between the initial and �nal
positions, i.e., u = x−x0

∆t , and thus we can turn the velocity-based
constraints into position-based constraints of the form C̃u(x) ≡
Cu

(
x−x0
∆t

)
= 0.

�e DC-PBD solver is summarized in Algorithm 2. We compute
the position projection using Fast Projection, just like in regular
PBD. �e velocity projection, on the other hand, is a positive semi-
de�nite linear problem, similar in structure to the one tackled by
Peer et al. [2015]. Same as they do for generic cases, we solve it
using Jacobi iterations. However, unlike the position projection,
where Jacobians are recomputed a�er each Jacobi iteration, in the
velocity projection the Jacobians are constant and can be computed
just once per time step. We provide full details of the application of
the DC-PBD solver to viscoelasticity constraints in Section 5.

To evaluate our DC-PBD solver, we have run a test where we
drop on the ground a cube with full viscosity constraints and no
compliance (Fig. 4, with τ = 0 and α = 0). We have computed the
RMS error of particles in the cube w.r.t. their undeformed positions,
as a global measure of constraint dri�. We have compared con-
straint dri� with our DC-PBD solver vs. regular PBD (applied also
to velocity-based constraints, discretized using �nite di�erences).
Position projection alone requires a time step smaller than 30 ms to
ensure stability. With our DC-PBD solver, on the other hand, the
simulation remains stable with time steps twice as large, i.e., 60 ms.
We have also found that the number of Jacobi iterations a�ects the
amount of constraint dri� (with lower dri� in DC-PBD under the
same total iteration count, as shown in the plots in Fig. 6), but it has
li�le e�ect on stability.

Our conclusions about the reasons for the improved stability
and robustness of DC-PBD are the following. Projection of particle
positions is nonlinear, and nonlinear Jacobi may have trouble con-
verging under large time steps. Projection of velocities, on the other
hand, is linear, and linear Jacobi turns out more robust. �e position
correction in the “Project velocities” step in Algorithm 2 removes
much of the position deviation, and further steps of nonlinear posi-
tion projection are less prone to robustness problems induced by
nonlinearity.

5 VISCOELASTIC POSITION-BASED FLUIDS
We integrate conformation constraints in a PBF model to simulate
viscoelastic incompressible �uids. However, unlike the original PBF
model, we employ our DC-PBD solver for improved convergence,
and we adopt XPBD to support constraint compliance. We start
this section by outlining the complete simulation model, and we
then describe in detail how to handle conformation constraints for
velocity and position projection respectively.

R
M

S 
er

ro
r

Frame

80 iters pos
160 iters pos
320 iters pos
40 iters vel + 40 iters pos
80 iters vel + 80 iters pos
160 iters vel + 160 iters pos

ToI

Fig. 6. Comparison of constraint dri� with our DC-PBD solver (with velocity
and position projection) vs. position projection alone, with a time step of
30 ms and various iteration counts. We drop a fully viscous cube (Fig. 4),
which impacts the ground at time ToI, and we measure the RMS error
of particle positions w.r.t. an undeformed cube as the simulation evolves.
Position projection alone su�ers higher error under the same total iteration
count, and it requires a smaller time step to be stable (30 ms, vs. 60 ms in
the case of DC-PBD).

5.1 PBF Model
PBF [Macklin and Müller 2013] simulates �uids using a SPH dis-
cretization [Monaghan 1992], with incompressibility as a density
constraint on particle positions. Following the SPH discretization,
given a set of particles, each one with massmj , a�ribute value aj ,
and position xj , the value of the a�ribute a at an arbitrary position
xi is evaluated as:

a(xi ) =
∑
j

mj

ρ j
ajWi j , (8)

with Wi j = W (xi j ) = W (xi − xj ) being the evaluation at xi of a
smoothing kernel with support radius h and centered at xi , and ρ j
the density �eld evaluated at xj . We employ the SPH-based a�ribute
evaluation for the computation of the �uid velocity in conformation
constraints (7).

Combining incompressibility and viscoelasticity, the DC-PBD
solver proceeds as follows. For the position projection step of DC-
PBD, we enforce both density and conformation constraints on
particle positions. In Section 5.3, we describe how we formulate
position-based conformation constraints per simulation particle.
We have experimented with various strategies to combine incom-
pressibility and viscoelasticity in the position projection, and we
have observed best convergence by staggering one Jacobi iteration
of incompressibility over all particles with one Jacobi iteration of
viscoelasticity over all particles.

For the velocity projection step of DC-PBD, we enforce only
conformation constraints on particle velocities, as we describe next
in Section 5.2. Once this is done, we update the conformation tensor
Q on each particle by solving the linear system (6).

Both for the position and velocity projection steps, we adopt the
XPBD method [Macklin et al. 2016], which modi�es the original
PBD iterations to support constraint compliance, as also done in
other constrained dynamics methods [Tournier et al. 2015]. In our
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viscoelasticity model, constraint compliance allows us to account
for the compliance α of viscoelastic stress de�ned in Section 3.2.

5.2 Discrete Velocity-Based Constraints
To implement the velocity-based, implicit conformation constraint
(7) within the PBF framework, we express the constraint on each
simulation particle. To do this, we compute the �uid velocity ui at
the position of the ith particle using the SPH formulation (8) and,
accordingly, we evaluate the SPH velocity gradient:

∇ui =
∑
j

mj

ρ j
uji ∇WT

i j , (9)

with uji = uj − ui .
Since the conformation tensor Q is symmetric, we rearrange it as

a six-dimensional vector q:

q = (Qxx ,Qyy ,Qzz ,Qxy ,Qxz ,Qyz )
T ; q̄ = (1, 1, 1, 0, 0, 0)T .

Rewriting the conformation constraint (7) using the vector nota-
tion, and plugging in the expression of the velocity gradient (9), we
obtain the discrete version of the velocity-based constraint:

Ci (u) = q0
i − q̄ + ∆t

∑
j

mj

ρ j
Ai j uji = 0, (10)

with Ai j =

©­­­­­­­«

2∂xWi j 0 0
0 2∂yWi j 0
0 0 2∂zWi j
∂yWi j ∂xWi j 0
∂zWi j 0 ∂xWi j

0 ∂zWi j ∂yWi j

ª®®®®®®®¬
.

We apply this constraint to each simulation particle in the velocity-
projection step of our DC-PBD solver (see Section 4.2). Each Jacobi
iteration with XPBD yields the following update of Lagrange multi-
pliers and particle velocities, respectively:

∆λi =
(
diag

(
Ji M−1 JTi

)
+

α

∆t
I
)−1 (

−Ci (u) −
α

∆t
λi

)
, (11)

∆ui =
β

ni

∑
j

JTji ∆λj . (12)

We relax the Jacobi update with a factor β
ni to ensure convergence,

where ni is the size of the particle neighborhood and β is a scaling
coe�cient to avoid excessive relaxation (β = 5 in our examples).

In our implementation, we approximate the constraint Jacobians
as:

Jik =
∂Ci (u)
∂uk

=

{
∆t mk

ρk
Aik if i , k

−∆t
∑
j
mj
ρ j Ai j if i = k .

(13)

Note that these Jacobians remain constant during the whole velocity
projection.

�e constraint response update (11) includes the compliance α
de�ned in Section 3.2. In the original XPBD formulation [Macklin
et al. 2016], the compliance is applied to constraints formulated
on positions, and hence it is scaled by a factor 1

∆t 2 . In our se�ing,
with constraints formulated on velocities, it is scaled by 1

∆t instead.
Fig. 5 and Fig. 9 show the e�ect of varying the compliance on two
di�erent examples.

A
ng

ul
ar

 m
om

en
tu

m

Frame

Initial shape

Non-corotational

Corotational

Fig. 7. Plot of angular momentum of a rotating block, with and without our
corotational formulation. With a non-corotational velocity gradient, rigid
body motion is soon damped. With our approach, residual damping is due
only to approximation errors.

5.3 Discrete Position-Based Constraints
For the position-projection step of our DC-PBD solver, we wish
to rewrite the discrete velocity-based conformation constraint (10)
as a function of particle positions, i.e., in the form C̃i (x) = 0. In
principle, we could do this by approximating particle velocities

through �nite di�erences of particle positions, uj =
xj−x0

j
∆t . However,

this approach would fail to preserve angular momentum and would
damp rotational motion of the �uid. At the core of the problem
lies the inability of SPH to correctly reconstruct linear �elds (e.g.,
uniform angular velocity). A similar observation was made by
Becker et al. [2009] for the computation of deformation gradients
and, similar to their corotational deformation gradient, we derive a
corotational formulation of the velocity gradient (9) from particle
positions. Fig. 7 shows an example simulation of a rotating block
with and without our corotational discretization. �e di�erence in
rotational damping is evident.

Following Becker et al., we estimate for each particle the best-�t
rotation Ri to the deformations of its neighbor particles:

Ri = arg min
∑
j

���Ri (x0
j − c0

i ) − (xj − ci )
���2 , (14)

where ci is the center of mass of the neighbor particles.
�en, for the estimation of the velocity gradient of the ith particle,

we de�ne corotational �nite-di�erence velocities for all particles in
its neighborhood, by compensating for the rotation Ri . Speci�cally:

uj =
xj − xrj
∆t

, with xrj = ci + Ri (x0
j − c0

i ). (15)

By substituting this velocity computation in the velocity gradient
(9), we rewrite (10) to obtain the position-based expression of the
discrete conformation constraint:

C̃i (x) = q0
i − q̄ +

∑
j

mj

ρ j
Ai j

(
xji − xrji

)
= 0, (16)

We apply this constraint to each simulation particle in the position-
projection step of our DC-PBD solver (see Section 4.2). Each Jacobi
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Scene & Fig Particles Time step Steps/frame Iters Time/frame τ α

Blocks (Fig. 4) 10k 1/240 8 20 0.16s See Fig.
Coiling (Fig. 5) 89k 1/240 8 40 1.08s See Fig.

Interactive (Figs. 8, 10) 15k 1/200 3 8 0.03s 0.1 0 ≤ α ≤ 1
Wa�e (Fig. 9) 80k 1/300 10 40 1.42s 0.1 0†, 0.01††

Honey (Fig. 12) 105k 1/300 10 10 0.15s 0 0.005
Cake (Fig. 1) 150k 1/750 25 15 1.13s 0.1†, 0.5‡ 0†, 0.015‡

Armadillos (Fig. 11) 12M 1/150 5 15 19s 0.5 0.01
Table 1. Parameter values and performance statistics for all our benchmarks (all rendered at 30 fps). The table lists: the total number of particles, the time step
∆t , the amount of steps per frame, the number of iterations of the viscoelasticity constraint projection per step, the total time per frame (in seconds), and τ
and α values. Some materials: † thick cream; †† runny cream; ‡ strawberry syrup.

iteration with XPBD yields the following update of Lagrange multi-
pliers and particle positions, respectively:

∆λi =
(
diag

(
J̃i M−1 J̃Ti

)
+

α

∆t2 I
)−1 (

−C̃i (x) −
α

∆t2 λi
)
, (17)

∆xi =
β

ni

∑
j

J̃Tji ∆λj . (18)

�e Jacobians are de�ned as J̃i = 1
∆t Ji , and they need to be recom-

puted a�er each Jacobi update of particle positions.

6 RESULTS
We have tested our viscoelasticity model on multiple benchmarks.
�ey were all executed on a Hexa-core Intel i7-3930K CPU with
32 GB of RAM, and a NVIDIA GeForce 1070 GTX GPU with 1920
CUDA Cores. �e PBF model with the DC-PBD solver is pro-
grammed entirely on the GPU. Table 1 shows the major perfor-
mance statistics and parameter se�ings for all the benchmarks (all
rendered at 30 fps). Next, we discuss the results. Please watch the
accompanying video.

Interactive scenes (Figs. 8 and 10). �ese scenes demonstrate the
suitability of the DC-PBD solver in interactive applications where

Fig. 8. Screen captures of interactive ice cream simulation. The dispenser
is controlled interactively through a Leap Motion™ device, and ice cream
is poured into the cone. Increasing the compliance α , the ice cream melts.
The scene consists of up to 15k particles, simulated at 30 ms/frame.

very small time steps cannot be used. �e improved convergence
and stability enables even interactive performance on moderately
complex scenarios. Both the hand-and-bowl scene and the ice cream
scene consist of 15k particles each. In these examples, we use a Leap
Motion™ device to track hand motions and move a virtual hand or
other objects. �e tests also show interactive modi�cation of the
material parameters, e.g., increasing the compliance α to model ice
cream melting.

Large-scale simulations (Figs. 9, 11 and 12). �ese scenes repre-
sent several computationally demanding benchmarks with complex
behaviors. �e simulation of whipped cream poured onto a wa�e
(Fig. 9) runs up to 90k particles with a computation time of 1.42 sec-
onds per frame. �is simulation requires high particle density to
correctly resolve the ridges on the cream’s surface. We compare
two scenarios, with the same value of relaxation time τ , but with
di�erent compliance α . With increased viscoelasticity (i.e., lower
α ), the cream coils in a regular manner.

�e massive test shown in Fig. 11 involves the computation of high
viscoelasticity on a large-scale scene, which replicates a benchmark
tested by Peer et al. [2015]. �ey simulated 11 million particles at
144 seconds per frame and 50 fps. We simulate 12 million particles at
19 seconds per frame and 30 fps. Prorating particle count and frame-
rate, our method achieves a speed-up of more than 13x, showing that

Fig. 9. Two types of whipped cream are poured onto a wa�le, with com-
pliance (α = 0.01) on the le�, and without compliance on the right. High
viscosity in the right causes a regular coiling e�ect.
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Fig. 10. Three screen captures of interactive manipulation of a viscoelastic fluid, consisting of up to 15k particles, and simulated at 30 ms/frame. The motion of
the hands is tracked using a Leap Motion™ device, and this motion is applied to a virtual hand and a bowl, which interact with the coiling fluid. We also
demonstrate interactive changes to material parameters.

our viscoelasticity model provides superior performance to previous
approaches even on large-scale scenes. Note that the iterative Jacobi
or Gauss-Seidel solvers of PBD-type methods become particularly
slow at such high resolutions, but our method achieves competitive
performance. Performance would su�er more, both with our method
and with the one by Peer et al., on taller hydrostatic columns.

�e pouring honey in Fig. 12 is simulated using 105k particles of
viscous �uid, rendered with translucent material. �is test runs at
0.14 seconds per frame on average, and exhibits the characteristic
buckling of highly viscous materials.

Multiphysics simulation (Fig. 1). One of the features of the PBD-
type constrained dynamics solvers is that they can easily accom-
modate objects and materials with diverse properties. Our model is
integrated in the RealFlow commercial so�ware, thereby enabling
seamless interaction with other types of PBD-based materials. In

Fig. 11. Massive viscoelastic simulation, with 12 million particles simulated
at 19 seconds per frame. This example demonstrates that our viscoelasticity
model achieves higher performance than previous methods (an approximate
speedup of 13x over [Peer et al. 2015]), even on large-scale scenes.

this scene, we simulate two types of viscoelastic materials (whipped
cream and strawberry syrup) using our conformation constraints,
rigid chocolate le�ers using shape-matching constraints, and so�
�owers using distance constraints. �e complete scene consists of
up to 150k particles and is simulated in 1.13 seconds per frame.

Discussion. In our examples, we have demonstrated that the pro-
posed viscoelasticity model covers e�ciently a broad set of simu-
lation scenarios, from interactive scenes to large-scale scenes. To
the best of our knowledge, we have shown unprecedented viscous
and viscoelastic interactive simulations, with a combination of high
viscosity and scene complexity (i.e., particle count) not possible be-
fore. Our solution also outperforms previous methods on large-scale
scenes, even though the type of constraint solver may not be a priori
best suited for such scenes. A key feature for the performance of
our solution is the e�ciency and robustness of the constraint solver,
which allows time steps of moderate size, few iterations per time
step, and massive parallelization within each iteration.

�e high performance of our solution is a combined result of
the constraint-based formulation, the constrained dynamics solver,
and the GPU-based parallelization. �e impact of our DC-PBD con-
strained dynamics solver in contrast to regular PBD is discussed in
Section 4.2. To evaluate the impact of the constraint-based formula-
tion, we have compared its performance to a stress-based formula-
tion of the polymeric �uid model described in Section 3.1, discretized
using SPH. We encountered impeding robustness problems to imple-
ment highly viscous materials (i.e., very low τ ) with the stress-based
implementation. On a falling cube of 32 × 32 × 32 particles (Fig. 4),
the stress-based model is stable for a value of τ = 0.015 and a time
step of 0.1 ms. With our constraint-based model, on the other hand,
the simulation is stable and of similar accuracy with a time step
of 6 ms and an overall speed-up of 7x. To evaluate the impact of
the GPU-based parallelization, we have executed the same falling-
cube benchmark on an optimized CPU implementation (with Intel
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Fig. 12. Simulation of honey using 105k particles of viscous fluid. This test runs at 0.14 seconds per frame on average, and exhibits the characteristic buckling
of highly viscous materials.

TBB-based parallelization). �e GPU-based implementation is 12x
faster.

Some viscosity models advocate de�ning viscous stress as a func-
tion of shear rate [Peer et al. 2015; Zhu et al. 2015]. In the purely
viscous case, our model converges instead to a null-strain-rate con-
straint, as discussed in Section 3.2. �e di�erence w.r.t. a null-shear-
rate constraint produces a hydrostatic stress, which acts against
density changes. We have tested using shear rate constraints in our
model, and we have validated that the hydrostatic stress acts as a
damping term on density, and it helps the convergence of the incom-
pressibility constraint. For compressible liquids, we could perhaps
add higher compliance to the hydrostatic part of the conformation
constraint, but we have not explored this avenue.

7 LIMITATIONS AND FUTURE WORK
In this paper, we have presented a novel model of viscoelasticity
for �uid simulation. Our model formulates viscoelasticity using
constraints, and can be solved e�ciently within the PBD constrained
dynamics framework. We have designed viscoelasticity constraints
inspired by a constitutive model of viscoelasticity for polymeric
�uids, which employs a conformation tensor with simple treatment
of purely viscous vs. elastic e�ects. To enable e�cient and robust
simulation, we formulate the constraints implicitly, and we describe
their integration in the state-of-the-art XPBD solver, with further
improvements.

Our DC-PBD solver might be applicable to other types of con-
straints, beyond those handled in our work. One such example is
friction, which shares a dissipative nature with viscosity, but incor-
porates constraints on the deviatoric stress. Another example is
incompressibility. Similar to the divergence-free SPH method by
Bender and Koschier [2017], incompressibility constraints could be
applied on both positions and velocities within our DC-PBD solver.

Despite the rich e�ects achieved with our method and the range
of materials that can be simulated, there are still some limitations
that suggest interesting future work. Our work inherits some of
the generic limitations of the PBD and PBF approach, in particular
the convergence limitations of Jacobi or Gauss-Seidel solvers. It
would be interesting to take advantage of the connection between
PBD and minimization formulations of implicit integration, to ex-
plore e�cient optimization algorithms, as done by others a�er the
projective dynamics method [Bouaziz et al. 2014]. However, those
optimization algorithms cannot be trivially extended to �uids as
they make strong connectivity assumptions [Weiler et al. 2016].

Our method cannot handle large elastic deformations accurately,
which would require storing some explicit measure of rest state. Ad-
ditionally, while some of our examples demonstrate the simulation
of �ne features, the ability to resolve such �ne features is eventually
limited by the particle resolution of the simulation. Fusing codi-
mensional representations [Zhu et al. 2015] with constraint-based
viscoelasticity would enable even richer e�ects under manageable
computational cost.

To conclude, even though our method is parameterized using two
physics-based parameters, it is di�cult to design them purely from
measurable physical quantities in a discretization-independent man-
ner. Our model is derived from a constitutive model for polymeric
�uids, and the parameters could be set from geometric and physical
quantities only for such �uids. However, we apply the model to
other types of viscoelastic �uids too, and in that case the model
can be regarded as empirical or phenomenological, and parameters
could be estimated from measurements. In our examples, we have
opted for an artist-driven parameter design, which nevertheless
proves e�ective thanks to the narrow set of parameters. Another
problem of the parameterization is that many details of the con-
stitutive model are reduced to just one parameter, the constraint
compliance. �is limits the ability to represent non-Newtonian �u-
ids with complex dependence on any of these material parameters,
e.g., some pseudoplastic �uids.
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