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Abstract

Virtual reality (VR) technologies are committed to the development of solutions
that enable the long-standing vision of creating immersive synthetic worlds that
transcend the boundaries of reality. Although VR is at the peak of its history thanks
to the confluence of various technologies developed over decades, the diversity of
interactions that may be portrayed in VR experiences remains limited.

While interaction with solid objects and deformable bodies has attracted a great
attention from researchers, other interesting media, such as fluids, have been largely
ignored. In the particular case of fluids, this is primarily due to a combination of
two factors. First, interactive fluid simulation methods are incapable of conveying
materials other than inviscid fluids. This severely limits the capacity to replicate
fascinating everyday materials such as honey, whipped cream, paint, or clay. Second,
conventional haptic devices struggle to provide compelling contact with fluid media,
particularly in applications requiring direct manipulation.

In this thesis, we investigate strategies to overcome the limitations of the current
state of the art in order to enable physical contact with rich and complex virtual
phenomena such as fluids. This is accomplished in two ways. First, we present
a highly efficient constraint-based method for viscoelastic fluid modeling. Our
approach is motivated by a constitutive model for polymeric fluids, which enables
the portrayal of a wide variety of materials under a single formulation. Second, we
present two methods for depicting tactile interaction with such media by leveraging
on the AM and STM control metaphors commonly employed in ultrasonic haptics.
We approach the device actuation as a numerical optimization problem, finding the
control variables that best reproduce the pressures arising from virtual interactions.
Furthermore, we incorporate knowledge of the technical and perceptual constraints
of both control metaphors to maximize the efficacy of our solutions.

To conclude, we demonstrate the applicability of the presented approaches, com-
bining them to address the challenge of virtual simulation of clay interaction. As a
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result, our method enables unprecedented degree of realism in natural manipula-
tion of materials exhibiting extreme viscoplastic behavior.
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Introduction 1
Since the advent of computing, researchers have long dreamed of harnessing its
possibilities for building synthetic worlds where users could engage in immersive
experiences transcending the boundaries of reality. Virtual reality (VR) technologies
embrace this challenge and are devoted to the development of solutions towards
the achievement of this long-standing dream.

Today, VR is at the peak of its history. The convergence of numerous technologies
developed over the past few decades, such as head-mounted displays, motion
trackers, and haptic devices, enables the generation of multisensory stimuli that
provide an unprecedented level of immersion and embodiment. Furthermore, the
emergence of commercial consumer-grade solutions has sparked renewed interest
from the industry, academia and the general audience. The rapid evolution of these
technologies, both in fidelity and economic terms, shapes the horizon of VR and
positions it as one of the fastest growing industries of the coming years.

However, despite technological advancements, the variety of interactions that can
be portrayed in VR experiences remains limited. The reason behind this lies in
the computational models used to describe the interaction between the user and
the virtual environment. While many works leverage on the use of physics-based
models for achieving natural and plausible interactions with virtual objects, most
of these focus primarily on the manipulation of rigid solids and, to a lesser extent,
deformable bodies. Researchers paid relatively little attention to the representation
of other ubiquitous and interesting media.

Fluids are a prime example of such media. They constitute a fascinating medium
whose complex and visually rich behaviors pervades many facets of our daily life.
Mundane and creative activities such as drinking water, pouring honey on toast,
painting a picture with your hands or modeling clay into unique shapes; are all
the consequence of interactions with one or more fluid substances (cf. Fig. 1.1).
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Fig. 1.1.: Examples of interactions with fluid phenomena.

It is not surprising that VR applications could find significant appeal in naturally
reproducing such interactions in virtual worlds.

However, representing such richness comes at a high computational cost. While
methods exist for visually simulating some types of fluids at interactive rates (e.g.
liquids and gases), attractive materials such as highly viscous or viscoelastic fluids,
as well as viscoplastic substances such as clay, remain an open challenge. Solving
the equations of motion that govern their behavior commonly requires the integra-
tion of numerically stiff differential equations, imposing severe constraints on the
size of the integration step in order to avoid numerical instabilities. Moreover, the
complexity of the system scales proportionally to the desired level of detail. As a
result, representing high frequency details, which is where the most visually appeal-
ing behavior resides, usually conflicts with the computational budget constraints of
interactive applications such as VR.

Alongside visual simulation, haptic feedback is critical for offering immersive inter-
action experiences to users. However, traditional haptic devices have a difficult time
providing compelling interaction with fluid media. While tool-based devices are
suitable for some fluid contact applications, they fall short of adequately expressing
these in scenarios where direct manipulation is desired (e.g. clay modeling). In the
recent years, haptic display technologies that enable the production of direct tactile
sensations on the skin in mid-air (i.e. without the need to carry or wear a haptic
device) have arisen. These technologies have the potential of being a good match
for displaying such interactions, as they are capable of producing stimuli without
restricting the user’s motion. However, given the inmaturity of these technologies,
it is unclear how the interactions occurring in the virtual fluid can be mapped to
device actuation, therefore remaining as an open challenge.
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In this thesis, we address these challenges and explore ways to push the boundaries
of current state of the art in VR interactions with fluids. To accomplish this, we
focus on two interesting challenges: the creation of novel models for the simulation
of viscoelastic and viscoplastic fluids suitable for real-time interaction, and the
development of various haptic rendering algorithms that enable users to interact
naturally with this kind of media.

1.1 Fluid Simulation in Computer Graphics

Fluid simulation has been one of the most active research topics in the field of
computer graphics for the last three decades, giving rise to a vast amount of work
dedicated to modeling attractive fluid phenomena for a wide variety of applications
such as feature films, commercials, video games or medical simulation. However,
despite its widespread application, the simulation of fluid phenomena continues
to be a difficult task. While fluid mechanics is nowadays fairly well understood,
numerically describing its motion requires the resolution of computationally chal-
lenging nonlinear differential equations. As a result, researchers have historically
constrained their simulations to the representation of surface phenomena for set-
tings where interactivity is required, relegating the simulation of fluid volumes to
offline applications.

Over the years, computer graphics researchers have concentrated on carefully
developing approximations that significantly reduce the computational cost as-
sociated with the dynamic simulation of specific types of fluids. Advancements
such as low-dissipation stable advection schemes, constrained dynamics solvers
to guarantee fluid incompressibility, and advanced numerical approaches such
as multigrid techniques with sophisticated boundary condition treatment; have
resulted in the development of high-performance and high-resolution fluid dy-
namics solvers. These advancements, together with the popularization of Graphic
Processing Units (GPUs) as massively parallel computational tools, has enabled the
development of methods suitable for their application in interactive settings (Crane
et al., 2007; Macklin & Müller, 2013).
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Fig. 1.2.: While real-time fluid simulation methods exist, the range of behaviors they are
able to model is limited. Source: Macklin and Müller, 2013.

However, these simulation methods have primarily focused on the representation
of Newtonian low-viscosity incompressible fluid materials such as water (Fig. 1.2).
Many everyday substances, such as honey, ketchup, whipped cream, and clay;
exhibit interesting highly viscous, viscoelastic, or non-Newtonian (i.e. whose
viscosity is shear rate or history dependent) behavior that cannot be reproduced
under such formulations. Therefore, to accomplish the objective of broadening the
possibilities of fluid interaction in VR, it would be interesting to find methods that
enabled the simulation of such materials in real-time.

Unsurprisingly, simulation of high viscosity poses additional computational chal-
lenges. Implicit formulations are required to robustly solve the numerically stiff
differential equations. In addition, due to the difficulty in computing the strain of
a fluid, numerical drift turns into perceptible loss of viscoelasticity. Some works
have explored the modeling of moderate to high viscosity materials for interactive
applications (Alduán et al., 2017; Macklin & Müller, 2013; T. Takahashi et al.,
2016; T. Takahashi et al., 2014). However, they are limited to modeling Newtonian
viscosity, and fail to achieve extreme viscous behavior without introducing artifacts
in the form of excessive drift or undesired elastic oscillations.

In Chapter 3 of this thesis, we address this challenge and propose a method
for the simulation of highly viscous and viscoelastic fluids that is suitable for
interactive applications. The key behind its high performance lies in the use of
constrained dynamics solvers as an alternative to implicit formulations to describe
these materials. Our solution is inspired by a constitutive model of polymeric
fluids (i.e. fluids where elastic polymers are dissolved), supporting a large range of
viscoelasticity behaviors under one common formulation.
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Although the parameters of our model can be artistically tuned to phenomeno-
logically portray viscoelastic fluids that are not strictly characterized under our
polymeric model, it is insufficient to represent materials exhibiting viscoplastic
behavior such as clay. In Chapter 6 we address this problem by presenting a method
for the simulation of viscoplastic materials. We leverage on a simplified version of
the method presented in Chapter 3, augmented with an elastoplasticity model to
capture the main features of clay-like materials.

1.2 Mid-air Haptic Rendering

While our senses allow us to perceive and comprehend different facets of the
reality in which we live, touch is the only sense that binds us to the world. It
enables human beings to engage with and manipulate their surroundings physically,
revealing features of objects that are not usually discernible through other senses:
shape, compliance, roughness, texture, and warmth, for example. However, its
study and understanding (haptics) falls far behind the degree of comprehension of
other senses such as sight or hearing.

Aligned with the current renaissance of virtual reality (VR), haptic devices (i.e.,
technology that stimulates users’ sense of touch) have also grown rapidly in popular-
ity due to the significant benefits they provide to the human-computer interaction
(HCI) experience. As a result, we have witnessed the emergence of novel haptic
technologies that employ a variety of actuation principles to enable convincing
virtual touch directly with our hands.

Mid-air haptic displays are a promising example of such emerging technologies.
Volumetric displays, together with hand-tracking technologies, enable users to
experience tactile stimuli directly in mid-air, freeing them from the constraints
of other display technologies such as contact surfaces or wearable devices, while
significantly expanding their workspace. Although researchers have developed
displays relying on a variety of physical phenomena (e.g., air flows (Tsalamlal et al.,
2014), lasers (Ochiai et al., 2016) or electric arcs (Spelmezan et al., 2016)), those
based in ultrasonic phased arrays have gained the most popularity in recent years
due to their low latency, large stimulus size, and ample workspace.
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Nonetheless, the generation of tactile percepts with these devices remains a largely
unknown process due to the absence of a computational model that maps activation
patterns to perception. Researchers have focused primarily on the representation of
holographic objects, developing different high-level metaphors to command these
ultrasound devices for such purposes. However, these command metaphors by
themselves are insufficient for portraying fluid interactions.

When we interact with fluids, our skin is subjected to a temporally and spatially
variable pressure field whose characteristics are determined by our motion and the
inherent properties of the flow. As such, tactile interaction with such media utilizing
ultrasonic haptics could be posed as the problem of dynamically reproducing a
pressure field on the user’s skin. To date, no command metaphor enjoys the ability
to directly reproduce an arbitrary spatially varying pressure field.

In Chapters 4 and 5 of this thesis, we address this challenge and propose several
methods for the tactile rendering of fluid media using ultrasonic phased arrays. We
approach the rendering problem as a dynamic mapping of target pressure fields
to control metaphors. By formulating this mapping as an optimization problem,
we are able to account for the known perceptual and technical limitations of
the various control metaphors, resulting in the best-match reconstruction of the
target pressure field. Moreover, we achieve efficient solutions by relying on the
phenomenon of the persistence of tactile perception, which allows to simplify the
problem by neglecting the temporal component of the actuation over a short time
window (i.e. by assuming a quasi-static pressure field).

The method presented in Chapter 4 is later extended in Chapter 6 for the rendering
of clay interaction, providing a more efficient use of the limited device resources by
biasing the optimization problem solutions based on perceptual weight maps.

1.3 Overview and Contributions

The main contributions of this thesis can be summarized as follows:

• In Chapter 3 we introduce a constraint-based model of viscoelasticity. We
describe a constitutive model of viscoelasticity in polymeric fluids, which is
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the stress-based counterpart for our constraint-based formulation. Then, we
describe the derivation of implicit conformation constraints acting on fluid
velocities, as well as the parameters of our model.

• In Chapter 3 we propose a doubly constrained position-based dynamics (DC-
PBD) solver, which inherits the robustness and efficiency of the original PBD
method, but exhibits improved stability under velocity-based constraints,
such as those in our viscoelasticity formulation, specially with large time
steps.

• In Chapter 3 we discuss the phenomenological application of our approach
to the representation of a variety of materials ranging from highly viscous to
viscoelastic, as well as practical implementation details for achieving high-
performance simulations while minimizing numerical artifacts that result in
undesired kinetic dissipation.

• In Chapter 4 we introduce an efficient algorithm for ultrasound rendering
of tactile interaction with fluids based on the amplitude modulation (AM)
command metaphor. We characterize the actuation of the device using a set
of focal points, optimizing the location and intensity of such focal points to
best approximate the pressure field on the skin. The key to the efficiency
of our solution is the assumption that the rendered pressure locally depend
only on the closest focal point, which enables the decoupling of location
and intensity into separate optimization problems. The resulting method
produces a responsive experience while dynamically interacting with a virtual
fluid.

• In Chapter 5 we propose another efficient rendering algorithm based on the
spatiotemporal modulation (STM) command metaphor, which characterizes
device actuation through the control of paths of focal points. We propose a
two-level path routing optimization to render the force distribution resulting
from a dynamic virtual interaction. A key aspect of our method is to pose STM
rendering as a quasi-static problem, which eliminates the temporal variable
on each dynamic rendering update, thus making the problem computationally
tractable.
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• Chapter 5 also compares the reconstruction quality of the method with
respect to the algorithm presented in Chapter 4, observing that our STM-
based algorithm succeeds to provide larger and smoother coverage than the
AM-based method, while exhibiting superior performance in discrimination
tasks.

• Finally, in Chapter 6, we propose a computational solution for the interactive
simulation of clay-like materials with unprecedented realism, coupled with
free-air tactile rendering that provides a natural tangible experience. Our
solution extends the methods proposed in Chapters 3 and 4 by including a
novel model of elastoplasticity and an optimization formulation that also
accommodates to perceptual weight maps respectively. Our algorithm takes
as input the interaction forces between a virtual hand model and the clay-like
material. We demonstrate the effectiveness of our method through expressive
creative experiences.

1.4 Publications

The following chapters are based on the following publications:

• Chapter 3: Conformation Constraints for Efficient Viscoelastic Fluid Sim-
ulation - Héctor Barreiro, Ignacio García-Fernández, Iván Alduán and Miguel
A. Otaduy - ACM Transaction on Graphics (Proceedings of ACM SIGGRAPH
Asia), 2017 (Barreiro et al., 2017).

• Chapter 4: Ultrasound Rendering of Tactile Interaction with Fluids - Héc-
tor Barreiro, Stephen Sinclair and Miguel A. Otaduy - Proceedings of World
Haptics Conference, 2019 (Barreiro et al., 2019).

• Chapter 5: Path Routing Optimization for STM Ultrasound Rendering -
Héctor Barreiro, Stephen Sinclair and Miguel A. Otaduy - IEEE Transactions
on Haptics, 2020 (Barreiro et al., 2020).
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• Chapter 6: Natural Tactile Interaction with Virtual Clay - Héctor Barreiro,
Joan Torres and Miguel A. Otaduy - Proceedings of World Haptics Conference,
2021 (Barreiro et al., 2021).

1.5 Outline

Chapter 2. Background.

In this chapter we will make a bibliographic review of the previous works that
have motivated this thesis. We have divided this chapter in three main blocks:
Computational Fluid Dynamics and Simulation Methodologies, that reviews the rele-
vant works in fluid simulation; Ultrasound Haptics, that describes the literature of
ultrasound-based haptic rendering; and Coupling Fluids and Haptics, that addresses
the coupling between the two previous ones.

Chapter 3. Simulation of Viscoelastic Fluids.

This chapter introduces our constraint-based model of viscoelasticity. We start with
a description of a constitutive model of viscoelasticity in polymeric fluids. Then, we
describe in detail the derivation of our implicit conformation constraints acting on
fluid velocities, as well as the parameters of the proposed model. Finally, we review
the practical implementation details of our approach, introducing our DC-PBD
solver; and showcase the method capabilities for the representation of a variety of
phenomenologically-reproduced materials.

Chapter 4. Ultrasound Rendering of Fluids through Amplitude Modulation.

This chapter describes our novel algorithm for ultrasound rendering of tactile
interaction with fluids based on the amplitude modulation command metaphor. We
also present an efficient solver especially designed for this optimization problem,
and we show results of interactive experiments with several fluid simulations.

Chapter 5. Ultrasound Rendering of Fluids through Spatiotemporal Modula-
tion.

In this chapter, we study the problem of rendering interactions with virtual envi-
ronments under the spatiotemporal modulation command metaphor. We detail the
novel optimization approach we propose, which also takes into account known
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perceptual parameters and limitations of the STM method. Finally, we compare
its performance against the method presented in Chapter 4 in the context of fluid
interaction rendering through a user discrimination task.

Chapter 6. Natural Interaction with Virtual Clay.

This chapter bridges our works in fluid simulation and haptic rendering, describing
our approach for the natural interaction with virtual clay. We describe the charac-
teristics of clay-like materials and then we introduce the multiple extensions to the
methods presented in Chapters 4 and 6 to account for their characteristic behavior.
Finally, we showcase the effectiveness of our simulation model and rendering
algorithm on several examples of creative experiences with complex and rich clay
material.

Chapter 7. Conclusions.

This chapter gives a final overview of the proposed methods and discusses the
limitations as well as the different opportunities for future work.
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Background 2
Reaching the ambitious goal of rendering interactive fluids (both in the simulation
and haptic senses) is only possible through the confluence of the research efforts
of the computer graphics and haptics communities. These efforts, however, are
the results of achievements and innovations that spanned the course of decades,
resulting in an enormous body of literature that is impossible to cover in a mere
few pages. Nonetheless, in this chapter we strive to provide a comprehensive
assessment of the state of the art, while placing a particular emphasis on those
works that serve as the foundation for the development of this thesis.

In Section 2.1, we describe the most relevant works in fluid simulation, outlining
the many strategies typically employed in the Computer Graphics literature while
focusing on those approaches that enable high-performance fluid dynamics. Our
discussion begins with the modeling of low-viscosity incompressible fluids, which
are the most commonly portrayed fluid phenomena in graphics. Then we steer
on to the particularities and considerations required for the simulation of more
interesting media, concluding with a thorough examination of the works that
address the simulation of viscoelastic fluid materials.

In Section 2.2, we review the literature on ultrasound-based haptic rendering.
We begin with a description of the fundamental concepts and principles behind
these technologies and then proceed onto describing the various techniques and
metaphors used to command their actuation, as well as their limitations and
perceptual implications.

Finally, and to conclude, in Section 2.3 we provide an overview of the works
addressing the coupling between fluid simulation methods and haptics devices for
the rendering of virtual interactions.
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2.1 Computational Fluid Dynamics and Simulation
Methodologies

The modeling of complex fluid phenomena such as liquids, gases and, to a lesser
extent, plastic solids; has attracted the interest of researchers from a wide range of
disciplines over the years. Fluids are ubiquitous to a broad range of engineering
challenges: mechanical, civil, chemical, biomedical, and so on.

However, many fluid mechanics problems (especially those involving fluid dynam-
ics) are difficult to solve analytically due to their complexity. Only partial solutions
exist for very specific subsets of problems. Furthermore, designing and constructing
laboratory experiments involving fluids under controlled conditions is both chal-
lenging and costly, requiring great effort to ensure the quality of the results. It is not
surprising that scientists have focused their efforts on developing tools that leverage
on computing and modern numerical methods for finding accurate solutions to
such problems. The discipline of fluid mechanics devoted to the development of
such tools is known as Computational Fluid Dynamics (CFD).

Computer graphics researchers are no strangers to CFD. Fluid simulation has been
one of the most active research topics in the field for the past three decades,
attracting hundreds of researchers and producing a vast amount of work dedicated
to modeling appealing fluid phenomena for a variety of applications. Feature films,
commercials, video games or medical simulation are just a few of the applications
where fluid simulations are extensively used. However, while CFD strives for high-
accuracy/low-performance solutions, computer graphics applications are often
willing to sacrifice such numerical accuracy for the sake of increased computational
speed. As a result, much of the research in the field has focused on developing
careful approximations to produce faster algorithms while improving or preserving
the visual quality of the simulations produced.

The common ground for most interesting fluid flows modeled in computer graphics
are the Navier-Stokes equations (NS) (Bridson, 2015). These equations represent
a reformulation of Newton’s Second Law for fluid substances. In the case of an
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incompressible Newtonian fluid (i.e. with constant density ρ and kinematic viscosity
µ), the flow evolution is described by:

ρ
Du
Dt

= −∇p+ µ∇2u + ρg, (2.1)

∇ · u = 0, (2.2)

where the unknowns u and p are the velocity and pressure of the fluid respectively.
Equation (2.1), also known as momentum equation, describes the evolution of the
fluid due to the interaction of both internal and external forces in terms of the
material derivative Du/Dt. Equation (2.2), known as continuity equation, ensures
the conservation of mass (i.e. the fluid’s incompressibility condition).

The momentum equation can be further broken down into three distinct terms.

• Pressure. The first one is the pressure term (∇p), which models the forces
arising from imbalances in internal pressures throughout the fluid. Higher
pressure regions will flow towards lower pressure ones. In the particular case
of an incompressible fluid, this may be deemed as the force required to satisfy
the continuity equation.

• Diffusion. The second one is the diffusion term (µ∇2u) which models
viscosity. Viscous fluids oppose to shearing deformations, which manifest
as local differences in velocity that can be measured through the Laplacian
differential operator (∇2). In the special case where µ = 0, the NS equations
simplify into the so-called Euler equations.

• External body forces. Finally, the third term are the external body forces
(ρg), which model external interactions such as gravity or contact.

With appropriate initial and boundary conditions, these equations can be discretized
and solved. The exact method used for this, however, is tied to the choice of fluid
flow description. In mechanics, there are two traditional approaches or viewpoints
for tracking the motion of a moving fluid or deformable solid (continuum): The
Lagrangian viewpoint and the Eulerian viewpoint.
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Fig. 2.1.: In the Lagrangian viewpoint (left) the motion of individual fluid elements is
tracked as the fluid flows and evolves over time. In the Eulerian viewpoint
(right) fluid properties are tracked at fixed points in space (e.g. in a grid) as the
volume flows through them.

The Lagrangian approach treats the continuum as a particle system. This way, each
material point of the fluid (or solid) is labeled as an independent particle, tracking
their evolution over time. The Eulerian approach, however, fixates on particular
points in space and records the evolution of the properties of the fluid elements
passing through them. Fig. 2.1 illustrates a visual comparison between the two
descriptions.

Both approaches have been effectively used in the computer graphics literature.
The works presented in Chapters 3 and 6 of this thesis employ a Lagrangian
discretization for the representation of highly viscous and viscoelastic materials,
whereas the works presented in Chapters 4 and 5 employ an Eulerian discretization
for the simulation of gaseous media.

In the following sections we will provide a more in-depth overview of approaches
based on both perspectives. Section 2.1.1 summarizes methods based on the Eule-
rian viewpoint, while Section 2.1.2 covers those based on the Lagrangian viewpoint.
Finally, in Section 2.1.3, we will briefly discuss other methods based on hybrid
schemes that succeeded in compensating the limitations of both perspectives.

2.1.1 Eulerian Methods

Most of the early computer graphics literature on fluid simulation concentrated on
the challenge of solving the Navier-Stokes equations from the Eulerian perspective.
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Fig. 2.2.: Typical discretization scheme for Eulerian fluids in computer graphics. The
simulation domain D is partitioned into cells of size C ∈ R3. Fluid quantities q
(e.g. pressure, ink, etc.) are typically stored at the center of the cell, whereas
velocity components ux, uy, uz are stored at the cell faces. This scheme enables
a robust estimation of second order derivatives.

The seminal works of Foster et al. (Foster & Fedkiw, 2001; Foster & Metaxas, 1996)
and Stam (2009) laid the foundations of the approximations commonly found in
graphics.

Typically, Eulerian methods follow a Chorin-style advection-projection scheme
(Chorin, 1968). The success of such schemes lies, at their core, on the use of
operator-splitting approximations. By dividing the partial differential equation
(PDE) to solve into multiple independent parts, splitting methods allow the com-
putation of individual solutions which, when combined, form an approximated
solution to the original equation up to first order accuracy.

In the particular case of the Navier-Stokes equations, operator splitting is primarily
used to decouple the pressure term of the momentum equation (2.1) from the
remaining inertial and internal forces, simplifying the overall process while enabling
high-performance solutions. Within this scheme, the robustness, accuracy and
performance of the resulting simulation depend primarily on three key ingredients:
the choice of discretization, the advection scheme and the pressure projection
strategy employed.
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Discretization

Though Eulerian methods can be expressed over arbitrary meshes, grid discretiza-
tion approaches are the most frequent solution used in computer graphics. They
enable easy computation of spatial derivatives through finite differences, signifi-
cantly simplifying the implementation process.

The simulated fluid domain Ω is partitioned into cells of size C ∈ R3. Fluid field
quantities q such as pressure, temperature, or other non-physical properties for e.g.
visualization purposes, are assumed to be sampled at the center of the cell. Flow
velocity components may also be sampled at the center of the cell. However, this
approach leads to poor estimation of unbiased derivatives due to a non-trivial null
space (Bridson, 2015), which could introduce problems during the projection step
of the solver.

This problem is well-known in the CFD literature. Harlow and Welch (1965)
addressed this problem by introducing a novel grid structure as part of their marker-
and-cell (MAC) method. As Fig. 2.2 illustrates, rather than sampling velocities
at the center of each cell, normal velocity components are sampled at the center
of each cell face. This staggered method circumvents the null space limitation,
facilitating the calculation of robust unbiased velocity derivatives at cell centers.
The use of MAC grids became common practice in computer graphics after their
introduction by Foster and Metaxas (1996).

Spatial and computational limitations constrain the scale and resolution of fluids
discretized as grids. Applications such as liquid simulation may incur in a wasteful
use of resources when simulating or storing in memory the entire domain if
the regions of interest span only a small percentage of the domain. Moreover,
full fidelity over the entire domain may not be necessary. In such cases, we
could perform a coarser treatment of those low importance regions in an adaptive
manner. This prompted the study of sparse or adaptive representations in the
graphics community.

Sparse block grids are a straightforward substitute for dense grids. Bridson (2015)
proposed a simple scheme based on hashing-backed associative structures that
could be applied to fluid simulation. He noted that special care must be put to
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Fig. 2.3.: Comparison between dense, sparse and ntree-based adaptive representations.
Dense grids (left) keep unoccupied cell information in memory at all times,
which is resource-wasteful, especially in high-resolution simulations. In contrast,
sparse (center) and adaptive ntree-based (right) approaches dynamically allo-
cate resources to regions of high importance (e.g. inside the liquid volume or
near the free-surface).

prevent redundant degrees of freedom in the interface between sparse blocks. This
approach has recently found renewed interest in high-performance computing
thanks to advances in efficient parallel sparse data structures. Bailey et al. (2015)
presented a framework built upon OpenVDB (Museth, 2013; Museth et al., 2013)
for efficient distributed computation of large-scale liquid simulations. Wu et al.
(2018) leverage on GVDB data structures (Hoetzlein, 2016) for parallel sparse grid
hierarchy construction and fast incremental updates on the GPU in the context of
hybrid Eulerian-Lagrangian schemes.

Alternatively, refinement strategies based in octree structures (Meagher, 1982)
have been shown to be successful substitutes to regular dense grids. Nonetheless,
these structures are prone to produce T-junction structures, which must be handled
carefully to prevent visual and numerical artifacts. Losasso et al. (2004) proposed
the first simulation method for liquids based in octrees. In their work, pressure
gradients near the T-junctions are approximated through the use of a Laplacian
matrix, which limits the accuracy of pressures to first-order and results in unphysical
eddy currents in T-junctions even in hydrostatic situations. This work was later
extended (Losasso et al., 2006) to improve the precision to second order, at the
cost of only allowing adaptivity in fully enclosed regions. Aanjaneya et al. (2017)
proposed a method that eliminates numerical and visual artifacts of prior octree
schemes. This is achieved by adapting the operators acting on the simulation
variables to reflect the structure and connectivity of a power diagram, eliminating
problematic T-junction configurations.

2.1 Computational Fluid Dynamics and Simulation Methodologies 17



Other adaptive schemes may include the use of non-uniform grids. Chentanez and
Müller (2011) proposed a method for simulating Eulerian fluids in real-time using
a hybrid grid representation composed of regular cubic cells on top of a layer of
tall cells. B. Zhu et al. (2013) introduced a grid structure that dynamically extends
cells surrounding a fine uniform grid to represent far-field regions. These methods
retain the efficiency of regular grids while including some of the advantages of
adaptivity.

Advection Schemes

The momentum equation describes the evolution of the flow in terms of the material
derivative. This derivative, though, is associated with a Lagrangian representation
of the fluid. As the Eulerian description focuses on the evolution at fixed points in
space, this expression must be generalized to include the concept of advection.

Advection is the term used to describe the transport of a substance or quantity as a
result of the bulk motion of a fluid. Given some physical quantity q of a material
element that is subjected to a space-and-time-dependent macroscopic velocity field
u, the material derivative is defined as:

Dq

Dt
≡ ∂q

∂t
+ u · ∇q, (2.3)

in which the term u · ∇q models the rate of change of q due to transport. Plugging
back this definition of the material derivative to (2.1) yields the Eulerian momentum
equation:

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p+ µ∇2u + ρg. (2.4)

Solving the advection term
(
∂q
∂t = −u · ∇q

)
then becomes an additional stage in

the solver pipeline as a result of operator splitting (Chorin, 1968). Unfortunately,
standard numerical integration schemes (such as forward Euler) fail to find reliable
solutions regardless of the choice of time step ∆t due to instabilities caused by the
discretization of the spatial derivatives (Bridson, 2015).

The physically-motivated semi-Lagrangian schemes offer a robust alternative for
solving advection. First introduced by Robert (1981) for meteorological analysis,
semi-Lagrangian schemes originate from the atmospheric sciences community for
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state t backtracking state t+1

Semi-Lagrangian Advection

Fig. 2.4.: Semi-Lagrangian schemes solve advection for an arbitrary quantity subject to a
macroscopic velocity field (left) by tracing the trajectory of each sampling point
backwards in time (center). The advected field is computed by interpolating
the field quantities at the backtraced locations (right).

modeling large scale flows, where large time steps are desired. The central concept
behinds this scheme consists of placing fictitious particles at the grid’s sampling
points. Given that the velocity field u(t) at a given time instant t is known, it is
possible to trace the particle’s trajectories (e.g. through forward Euler or higher
order integration schemes such as Runge-Kutta) and thereby calculate their location
at a previous time instant. Then, as Fig. 2.4 illustrates, a solution for advection is
obtained by interpolating the field quantities at these origin positions.

This simple scheme enjoys several benefits. Perhaps the most significant one is that
it is unconditionally stable, allowing for the use of time steps far larger than the
CFL criterion. Nonetheless, this stability is attained at the expense of significant
numerical dissipation, which manifests as artificial diffusion. Fedkiw et al. (2001)
and D. Kim et al. (2008) suggested higher-order interpolation schemes to mitigate
diffusion in semi-Lagrangian advection schemes. B. Kim et al. (2005) introduced
the BFECC method which compensates spatial and temporal errors through mul-
tiple backward and forward advection steps. Selle et al. (2008) generalized this
technique by proposing a semi-Lagrangian variant of the MacCormack method
and demonstrating second-order spatial and temporal precision. Molemaker et al.
(2008) suggested using the QUICK advection scheme for low-dissipation advec-
tion, but this approach is constrained by the CFL stability condition. Alternatively,
kinetic dissipation can be mitigated by artificially restoring energy back into the
fluid. Fedkiw et al. (2001) employed vorticity confinement forces to counteract
dissipation at vortices and eddies.
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Enforcing Incompressibility

After solving the advection step, the resulting velocity field might not be divergence-
free. This implies that the resulting flow is not incompressible, thus violating the
continuity equation. To enforce incompressibility, advection-projection schemes
map the velocity field to its closest divergence-free field. For this end, they rely on
the Helmholtz-Hodge decomposition theorem (Bhatia et al., 2012), which states
that any sufficiently smooth, rapidly decaying vector field ξ can be decomposed
into the form:

ξ = ∇Φ + r, (2.5)

where Φ is a scalar potential function, whose gradient encodes the irrotational
(curl-free) component of ξ; and r is a vector field that encodes the solenoidal
(divergence-free) component. Fig. 2.5 illustrates the Helmholtz-Hodge decomposi-
tion of an arbitrary vector field. In the context of incompressible fluid dynamics,
such decomposition is achieved by finding the pressure function p that satisfies the
Poisson equation:

∇2 · p = ρ

∆t∇ · u. (2.6)

Under no constraints, an infinite set of functions p satisfy (2.6). To ensure the
uniqueness of the solution, boundary conditions must be introduced. As illustrated
by Fig. 2.6, two kind of boundary conditions are typically employed in Computer
Graphics applications: Dirichlet and Neumann boundary conditions. On one hand,
Dirichlet boundary conditions impose specific pressure values on the boundary (e.g.

Fig. 2.5.: The Helmholtz-Hodge decomposition states that any sufficiently smooth, rapidly
decaying vector field (left) can be decomposed into curl-free (center) and
divergence-free (right) components. Source: Ribeiro et al., 2016.
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p(ΓD) = 0) often to model empty or open boundaries. On the other hand, Neumann
boundary conditions impose particular pressure derivatives on the boundary (e.g.
∂p
∂n

∣∣∣
ΓN

= 0 where n is the boundary normal) often used to model solid obstacles.

Discretizing (2.6) and carefully imposing the appropriate boundary conditions
yields a linear system Ap = b whose solution contains the necessary values to
enforce the incompressible velocity field. Additionally, the resulting system is
sparse, symmetric, and positive-definite (SPD), allowing for the resolution of the
system to be accomplished using a large number of high-performance numerical
algorithms. Iterative methods based on Krylov subspaces such as the Preconditioned
Conjugate Gradient method (PCG) are popular options for solving the pressure
Poisson problem (Foster & Fedkiw, 2001). Nonetheless, solving this linear system
usually becomes the bottleneck of a typical fluid solver pipeline. The number of
iterations required to achieve convergence dramatically increases with the scale of
the problem, and the cost of storing and updating the preconditioner is prohibitive
for large domains. Therefore, applications seeking interactive times must resort to
alternate schemes susceptible to parallelization.

Fig. 2.6.: To ensure the uniqueness of the solution to the pressure Poisson equation, bound-
ary conditions must be introduced. (left) Dirichlet and Neumann boundary con-
ditions are introduced to model empty and solid boundaries respectively. (right)
The corresponding boundary cells are flagged accordingly. Source: McAdams
et al., 2010.
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Certain discretization choices such as regular grids permit a direct mapping to a
variety of acceleration schemes. Molemaker et al. (2008) took advantage of the
regularity of Eulerian grids to develop a multigrid solver for inviscid incompress-
ible flow. McAdams et al. (2010) employed multigrid cycles (McCormick, 1987)
as preconditioner for the Conjugate Gradient method, dramatically improving
convergence and robustness on irregular domains.

Over the last decades, advances in graphics hardware have also motivated re-
searchers to explore novel strategies that make efficient use of their computational
prowess. Krylov solvers, which are very efficient on CPUs, become comparatively
less efficient on GPUs. The reason is that GPUs are memory bound, and the system
assembly and sparse matrix-vector multiplications of Krylov solvers become ineffi-
cient. In contrast, relaxation methods (Jacobi, Chebyshev) enable almost trivial
parallelization on GPUs, at the expense of more but faster iterations. A prime
example of this is the work of Crane et al. (2007), who leveraged on the graphics
hardware to implement a high performance parallel solver.

Due to its ability to produce highly-detailed flows at interactive rates, we follow the
method of Crane et al. for the simulation of gaseous media in Chapters 3 and 4.

2.1.2 Lagrangian Methods

Early Lagrangian-based methods did not find the same degree of success for the
simulation of fluid dynamics as Eulerian methods did. Despite their widespread
adoption in the field of deformable body modeling, standard Lagrangian descrip-
tions present significant challenges when applied to fluid media. While mesh-based
representations (which are the standard approach for deformable bodies) enable
robust evaluation of the quantities within the fluid volume, they are hindered by
the need for sophisticated remeshing techniques to handle the complex dynamic
topologies that arise in fluids. Mesh-free approaches (i.e. particle systems), on
the other hand, allow a simpler representation of these complex topologies, but
introduce the problem of computing the spatial derivatives needed to model the
flow’s evolution.
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Fig. 2.7.: Smoothed Particle Hydrodynamics (SPH) provides a framework to approximate a
spatially-continuous field at an arbitrary location i through weighted summation.
Particle contributions are modulated according to the smoothing kernel function
W . Source: Wikimedia.

Researchers found renewed interest in Lagrangian descriptions for fluid simulation
with the introduction of the Smoothed Particle Hydrodynamics (SPH) method to
the graphics community during the late 90s (Desbrun & Gascuel, 1996). Developed
by Monaghan (1992) for its application in the field of computational astrophysics,
SPH is a Lagrangian method specifically designed for the analysis of compressible
flow problems typically arising in astrophysical phenomena. At its core, SPH is a
mesh-free interpolation scheme. The method samples the fluid domain Ω into a
set of discrete points (also known as smoothed particles) which carry intrinsic flow
properties and quantities such as mass, position, velocity, temperature, etc. Then,
as Fig. 2.7 shows, these particles are used to approximately reconstruct spatially-
continuous field quantities through a weighted summation (i.e. smoothing) of the
discrete values. Approximate derivatives required to model flow evolution can then
be determined through analytical differentiation.

This Lagrangian scheme presents several advantages over traditional Eulerian
techniques. Conservation of mass is guaranteed without extra computation as
particles themselves represent mass. Pressures can be computed from contribu-
tions of neighboring particles rather than by solving linear systems of equations.
Moreover, free surface tracking for multi-phase fluids is automatic thanks to the
particle representation. Nonetheless, compared to grid-based techniques, a large
amount of particles is required to produce simulations of equivalent resolution.
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Graphics researchers found that this approach could be extended beyond its original
scope to address a wide range of computer graphics problems. The seminal works of
Desbrun and Gascuel (1996) and Müller et al. (2003) demonstrated its applicability
to the animation of inelastic bodies and fluid dynamics respectively. Since then,
the majority of research on Lagrangian fluid simulation has focused on finding
strategies to overcome its limitations while extending the method’s applicability to
a wider range of materials.

Smoothed Particle Hydrodynamics

Within the SPH framework, any arbitrary spatially-continuous field quantity A can
be approximated through the interpolant:

A(x) =
∑
j

Aj
mj

ρj
W (x− xj , h), (2.7)

where x is the point being evaluated, Aj is the discrete field attribute A of particle
j and xj , mj and ρj are the particle’s position, mass and density respectively. The
smoothing kernel function W (usually formulated as isotropic Gaussian-like func-
tions with finite support h) modulates particle contributions to the interpolation.
Fig. 2.8 depicts examples of smoothing kernel functions typically employed in
graphics. Spatial derivatives can be easily approximated thanks to the linearity of
the operator (∇):

∇A(x) =
∑
j

Aj
mj

ρj
∇W (x− xj , h), (2.8)

∇2A(x) =
∑
j

Aj
mj

ρj
∇2W (x− xj , h). (2.9)

With these tools, fluid dynamics can be achieved by discretizing and solving the
individual terms of the Navier-Stokes momentum equation (2.1). As particle
representations preserve mass, the continuity equation (2.2) can be omitted. Müller
et al. (2003) follows this approach to solve free-surface fluid dynamics. In their
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Fig. 2.8.: The three smoothing kernels Wpoly6, Wspiky and Wviscosity (from left to right)
defined in the work of Müller et al. (2003) that are commonly used for the
simulation of fluid dynamics. The thick lines show the kernels, the thin lines their
gradients in the direction towards the center and the dashed lines the Laplacian.
Note that the diagrams are differently scaled. The curves show 3-d kernels along
one axis through the center for smoothing length h = 1. Source: Kelager, 2006.

work, internal pressures are estimated through the the ideal gas equation of state
(EOS):

pi = k(ρ− ρ0), (2.10)

where ρ0 is the fluid’s rest density and k is the gas constant which depends on tem-
perature. While the method produces convincing results, this treatment of pressure
terms often leads to drift in the incompressibility condition under moderately large
time steps (∆t ≤ 10−4), rendering it infeasible for the modeling of certain types of
liquids (e.g. water) in graphics applications unless prohibitively small time steps
are used.

Enforcing Incompressibility

Strategies for strictly enforcing incompressibility have become a major focus of
computer graphics research. Pressure propagation is closely related to the equation
of state employed for the computation of pressure forces. Becker and Teschner
(2007) proposed a weakly compressible approach (WCSPH) based on the Tait
EOS to achieve higher incompressibility, usually tuned to never exceed density
deviations of 1%. However, this method suffers from numerical instabilities caused
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by the resulting stiff pressure forces, leading to severe time step restrictions to
satisfy the CFL condition.

Similarly to Eulerian methods, incompressibility can be enforced through projection
schemes. Incompressible SPH (ISPH) methods are devoted to find strategies in
this direction. Colin et al. (2006) enforced a divergence-free velocity field by
solving the pressure Poisson equation (PPE) within a SPH framework. While
this approach admits larger time steps than WSCPH, the computational cost per
time step is significantly higher. Later, Ihmsen et al. (2013) proposed a novel
discretization of the PPE that considers the relation between solved pressures and
forces to improve the convergence rate of the solver. Alternatively, Solenthaler and
Pajarola (2009) proposed a predictive-corrective scheme (PCISPH) that iteratively
adjusted particle pressures to achieve a target rest density. This approach avoids
the computational costs associated with solving the PPE, resulting in a significant
reduction in computational cost while maintaining the ability to use large time
steps. Bender et al. (2014) further extended these works by proposing a dual solver
that enforced low volume compression and divergence-free velocity fields, resulting
in increased stability and convergence (and consequently, performance).

Projection schemes may be deemed as a particular case of the more general idea
of constrained dynamics solvers. These formulations have proven successful for
the simulation, among others, of articulated bodies (Baraff, 1996), contact (Baraff,
1989; Kaufman et al., 2008), deformation limits (H. Wang et al., 2010), inex-
tensibility (Goldenthal et al., 2007), volume preservation for solids (Irving et al.,
2007), fluid incompressibility (Foster & Metaxas, 1996; Solenthaler & Pajarola,
2009), or even generic dynamic deformations (Bender et al., 2014; Müller et al.,
2006; Stam, 2009). By expressing stiff properties as constraints, a large variety of
high-performance solvers become available.

A popular constrained dynamics solver in computer graphics is the Position-based
Dynamics (PBD). Proposed by Müller et al. (2006), this method addresses the
resolution of stiff elastic potentials by modeling them as constraints formulated
on particle positions. Similarly to advection-projection schemes (Chorin, 1968),
PBD constraints are enforced after evaluating a constraint-free state for the next
time step. However, instead of employing a global solver, constraint projection in
PBD is typically performed using Fast-Projection Jacobi or Gauss-Seidel iterations.
Constraints are linearized after each iteration, and Fast Projection implies that,
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within each iteration, the projection is computed by minimizing the distance to the
result from the previous iteration, not to the initial value (Goldenthal et al., 2007;
Hairer et al., 2002).

In contrast to schemes based on system linearization, this iterative algorithm
is more robust in handling complex (non-linear) configurations. Moreover, the
algorithm is straightforward to implement, highly parallelizable, and robust to
large time steps and degenerate configurations, making it specially suitable for its
use in interactive applications. Although the original formulation of the method is
not derived from continuum mechanics foundations, its XPBD extension (Macklin
et al., 2016) links the method to implicit integration schemes, adding a relaxation
term to the constraint projection in order to model constraint compliance.

Position-Based Fluids

Macklin and Müller (2013) extended the Position-Based Dynamics method to
address the problem of simulating incompressible fluids, known as Position-Based
Fluids (PBF). In their method, pressure computation is omitted in favor of imposing
a constant density constraint formulated for each fluid particle in the system:

Ci(x1, ...,xn) = ρi
ρ0
− 1, (2.11)

where Ci corresponds to the density constraint of the i-th particle, ρi to its evaluated
density (as computed by the standard SPH interpolant) and ρ0 corresponds to the
fluid’s rest density. Enforcement of this constraint leads to configurations that
satisfy fluid incompressibility. However, the resulting particle distributions are
prone to clustering (cf. Fig. 2.9). This problem arises as a consequence of deficient
neighborhoods appearing near the free-surface. Macklin et al. (2014) address
this problem by adding an artificial pressure term which keeps particle densities
slightly lower than the rest density, thus producing a surface-tension effect and an
improved particle distribution.

Position-Based Fluids achieves comparatively similar convergence rates to modern
SPH solvers in moderately-sized scenes (∼100K particles) at a fraction of their com-
putational cost, leading to real-time simulations. However, these desirable qualities
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Fig. 2.9.: From left to right: (a) The incompressibility constraint produces a displace-
ment on the particles position in order to enforce a constant density across the
fluid. (b) Particle clumping, or tensile instability, is produced when the con-
straint is unable to satisfy the nominal density due to deficient neighborhoods.
Source: Macklin and Müller, 2013.

come at a cost. Fluids simulated with PBF suffer from numerical dissipation. Such
dissipation can be mitigated through the use of second order schemes (Macklin
et al., 2014) and vorticity confinement techniques (Fedkiw et al., 2001; Macklin &
Müller, 2013). In addition, certain configurations may complicate the convergence
of the Jacobi or Gauss-Seidel solvers, specially due to the nonlinearities introduced
by the SPH kernels used in PBF. In such cases, great care must be put to ensure
the stability of the simulation. Finally, the range of materials that PBF is capable of
representing is limited to inviscid fluids or fluids with a low coefficient of viscosity.
As detailed in Section 2.1.5, other interesting media such as highly viscous or
non-Newtonian materials are difficult to reproduce with this method.

Despite this, the method’s widespread adoption in industry-standard animation
software packages and real-time applications demonstrates that it is a viable
approach for simulating fluid dynamics in interactive graphics applications. In
Chapter 4, we introduce a PBF-based approach for efficiently reproducing highly
viscous and viscoelastic fluids. To accomplish this, we expand the Position-Based
Dynamics algorithm to enforce constraints at both position and velocity level. In
Chapter 6 we build upon a simplified version of this model for the interactive
simulation and rendering of clay-like materials.
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2.1.3 Hybrid Methods

While Lagrangian or Eulerian methods constitute the traditional approaches in
the CFD and graphics literature for solving fluid mechanics problems, alternative
schemes for modeling flow dynamics exist. Over the past decades, hybrid methods
combining grid and particle representations have become very popular in com-
puter graphics applications. Among these, the Particle-In-Cell (PIC) technique
family (Harlow & Welch, 1965) is perhaps the most well-known.

Introduced by Y. Zhu and Bridson (2005) to computer graphics through the Fluid
Implicit Particles method (FLIP), the central idea behind these methods is to transfer
the fluid quantities back and forth between Lagrangian and Eulerian discretizations
to solve different aspects of the flow (Fig. 2.10). While particles are used to
evaluate the advection of fluid physical quantities, an auxiliary Eulerian grid is
employed to project the velocities to guarantee incompressibility.

The original PIC method achieves high-resolution flows even on coarse meshes at
the cost of increased dissipation and memory requirements. FLIP improves on PIC
by incorporating a simple blending scheme between particle and grid velocities,
which minimizes dissipation. However, manual adjustment of the blend weights on
a case-by-case basis is necessary to ensure the simulation’s stability.

Dissipation in PIC is related to information loss during particle-grid transfers. To
address this problem, Jiang et al. (2015) developed the Affine Particle-In-Cell
(APIC) scheme. In their work, an affine representation of local momentum is
explicitly stored on a per-particle basis to preserve affine velocity fields when trans-
ferring from grid to particle. As a result, this scheme achieves extremely stable,
low-dissipation flows with little overhead with respect to PIC/FLIP. This scheme
was further generalized by Fu et al. (2017) with the introduction of the Polyno-
mial Particle-in-Cell (PolyPIC) scheme which stores a polynomial representation
instead.

Recently, the Material Point Method (MPM) has gained popularity in the graphics
community for its ability to simulate a variety of different effects and materials.
Developed by Sulsky et al. (1995), MPM was conceived as a generalization of the
PIC/FLIP methods for the simulation of multiphase (solid-fluid-gas) interaction
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Fig. 2.10.: (top) Traditional PIC methods transfer fluid information from particles to
grid and viceversa through averaging. (bottom) The specific transfer scheme
employed has a direct impact on the stability and dissipative properties of the
resulting simulation. Source: Jiang et al., 2015.

problems. Although the method produces excellent results, it is computationally
intensive.

2.1.4 Medium-Specific Details

Additional considerations may be necessary depending on the fluid phenomena
being simulated. Fire and smoke are examples of this. As fuel chemically reacts
to form hot gaseous products (smoke and soot), these mediums expand and rise
due to buoyancy forces. As such, the incorporation of reaction-diffusion models for
combustion and the consideration of thermal effects such as buoyancy are required
to produce compelling results (Fedkiw et al., 2001; Nguyen et al., 2002).

In the case of liquids, the interfacing media (e.g. air) can be disregarded, and the
problem translated into how to track the fluid’s free surface. While tracking of the
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free-surface is inherent to Lagrangian methods, Eulerian methods require additional
mechanisms to determine the occupied regions of the domain. Hybrid approaches
such as marker particles (Harlow & Welch, 1965) are among the simplest tracking
mechanisms to determine occupied cells, but resampling mechanisms are needed
to ensure consistent representation of small-scale details. Alternatively, level set
approaches (Osher & Sethian, 1988) provide an implicit representation of the
liquid that enables robust free surface tracking. However, special care must be
put to prevent volume loss as a result of numerical dissipation. Particle level set
methods (Y. Zhu & Bridson, 2005) circumvent this problem by inserting particles
around interfaces. Accurate surface tracking is provided by updating the particles
independently of the level set and using their information to correct the function.
However, this accuracy is achieved at the expense of high computational cost.

2.1.5 Viscoelasticity

Beyond modeling inviscid fluids, the simulation of complex fluid materials such as
those presenting high viscosity or nonlinear stress-strain relationships has captured
the interest of many researchers in the field of computer graphics for many years.
This is unsurprising, given that all of these visually appealing behaviors and effects
are unique to these types of fluids.

In the case of high viscosity, naive integration (e.g. employing explicit schemes) of
the diffusion term present in the momentum equation (2.1) significantly restricts
the variety of materials that can be expressed under reasonable computational
time due to the resulting stiff forces (CFL condition). Consequently, researchers
have devoted considerable effort to develop alternative integration schemes for
representing these materials.

The first attempts in computer graphics relied on grid-based discretizations (Ter-
zopoulos & Fleischer, 1988). Carlson et al. (2002) simulated highly viscous fluid
materials and melting effects using an implicit viscosity formulation over a Marker-
and-Cell (MAC) approach. Goktekin et al. (2004) extended the Navier-Stokes
equations incorporating elastic and plastic terms to simulate viscoelastic fluids
over a level-set discretization. Batty and Bridson (2008) designed an accurate
method for the simulation of characteristic effects in free-surface viscous fluids,
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such as buckling and coiling. They emphasized the formulation of correct boundary
conditions, outlined a variational formulation of viscosity, and designed an effi-
cient solver. Wojtan and Turk (2008) enabled the preservation of thin viscoelastic
features in finite element simulations. Larionov et al. (2017) proposed an implicit
Stokes solver to simulate highly viscous Newtonian fluids also using a grid-based
discretization. The focus of these methods has been to enable complex effects,
without particular attention to computational performance.

Some works have designed solutions optimized for the simulation of specific
viscosity effects. Bergou et al. (2010) and Batty et al. (2012) focused on the
simulation of viscous threads and thin layers, respectively. Remeshing strategies
helped them preserve thin surfaces and reduce the simulation cost. B. Zhu et al.
(2015) developed a method for the simulation of viscous effects on features of
different dimensions, all handled in a uniform manner. They achieve high-quality
simulation of very thin features for non-Newtonian fluids.

Other works leveraged on the natural ability of methods such as the Material
Point Method (MPM) to model viscoelasticity. Stomakhin et al. (2013) first applied
MPM to snow simulation, and later extended it to phase changes and high viscos-
ity (Stomakhin et al., 2014). Ram et al. (2015) used the MPM formalism to simulate
viscoelastic materials, while Yue et al. (2015) applied it for the simulation of foam.
More recently, this method has been applied to the simulation of sand (Daviet &
Bertails-Descoubes, 2016; Klár et al., 2016) and the interaction between sand and
water (Tampubolon et al., 2017).

Particle-based discretizations such as Smoothed Particle Hydrodynamics (SPH)
have also been extended to the simulation of these highly-deformable materials
with good computational performance. Solenthaler et al. (2007) proposed a unified
model to simulate melting and solidification effects. They incorporated an elastic
force term based on a strain measure, inspired by the previous work of Müller
et al. (2004). Paiva et al. (2006) used an XSPH velocity correction to simulate
non-Newtonian fluids, which was been extended by Andrade et al. (2015) to
reproduce buckling in Newtonian viscous fluids. Chang et al. (2009), on the other
hand, used an SPH discretization of the elastic strain tensor to simulate viscoelastic
behavior. He et al. (2012) used the SPH approximation to solve the Poisson equation
locally and simulate moderately viscous fluids. Granular media can be considered
a special type of non-Newtonian fluid. Lenaerts and Dutré (2009) extended the
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work of Solenthaler et al. (2007) to simulate granular behavior, and Alduán and
Otaduy (2011) proposed strain-rate-based models for granular friction and cohesion
effects.

Recently, several authors have designed implicit SPH solvers for the simulation
of highly viscous fluids. Bender and Koschier (2017) proposed a divergence-free
SPH solver that also supports viscous materials. T. Takahashi et al. (2015) enforced
incompressibility in simulations with high viscosity by solving for pressure implic-
itly. Peer et al. (2015) simulated high viscosity by canceling shear rate in a least
squares manner. For each particle, they set a goal velocity gradient that cancels
the local shear rate, and they solve for the velocity field that best matches the
goal velocity gradients. Peer and Teschner (2017) later extended their method to
improve vorticity handling. The resulting method achieves high performance in
moderate to large scale scenarios.

The addition of elastic effects to viscosity simulations requires, in principle, knowl-
edge of undeformed configurations to simplify the computation of deformation
metrics. However, maintaining this knowledge becomes complicated under plastic
flow. Clavet et al. (2005) used a spring-based approach to apply elastic forces in
a particle-based fluid simulation, and they also proposed a strategy to create and
remove elastic links between particles as the particle neighborhoods evolve. Ger-
szewski et al. (2009) introduced instead an approach to measure deformation that
does not require an explicit undeformed configuration in a Lagrangian plastic flow
model.

Viscous fluid simulation has also been addressed in the context of Position-based
Fluids (PBF). T. Takahashi et al. (2014) proposed a constrained-based treatment
of viscosity. They define particle links similar to those of Clavet et al. (2005)
to describe the local material structure, addressing also elasticity and volume
conservation (T. Takahashi et al., 2016). However, their model fails to prevent drift
without suffering undesired elastic oscillations.

In Chapter 3 we propose a constraint-based solution for fluid viscoelasticity. Our
solution is inspired by a constitutive model of polymeric fluids (i.e. fluids where
elastic polymers are dissolved), which supports a large range of viscoelasticity
behaviors under one common formulation (Deshpande et al., 2010). As T. Taka-
hashi et al. (2014), our viscoelasticity model also avoids the explicit definition

2.1 Computational Fluid Dynamics and Simulation Methodologies 33



of undeformed configurations. We achieve notion of this configuration thanks
to a conformation tensor whose time evolution describes the state of the fluid.
Moreover, our formulation reproduces a larger palette of viscoelastic materials and
achieves even higher efficiency than the work of Peer et al. (2015) on moderately
large scenes thanks to a PBD-style constrained dynamics solver. A simplified version
of this formulation is employed in Chapter 6 for the simulation of clay materials.

Since the publication of our work, researchers have further studied the modeling
of viscous and viscoelastic fluids. Weiler et al. (2018) proposed an implicit vis-
cosity solver based on a combination of SPH and finite differences to discretize
the Laplacian of the velocity field. The resulting method guarantees physically
meaningful behavior under spatial and temporal refinement, preventing ghost
forces caused by deficiencies at the free surface. However, this discretization of
the Laplacian requires the enforcement of a divergence-free velocity field. In the
context of MPM, Fang et al. (2019) presented a predictor-corrector finite strain in-
tegration scheme for general viscoelastic solids under arbitrarily large deformation
and non-equilibrated flow.

2.2 Ultrasound Haptics

The advent of non-contact haptic displays has introduced new forms of interaction,
allowing users to experience tactile stimuli in mid-air without the need for holding
or wearing a device. Ultrasound haptic devices based on phased arrays are notable
examples of this type of displays.

As illustrated by Fig. 2.11, ultrasonic phased arrays (UPA) achieve mid-air stim-
ulation through a phenomenon known as acoustic radiation pressure. Multiple
ultrasound transducers, producing an ultrasound wave of the same frequency, are
modulated in phase to achieve maximal combined pressure intensity at a certain
location in space, known as focal point. When interacting with skin tissue, the
pressure exerted by these acoustic waves elicits complex mechanical waves on
the skin, producing an at least equally complex activation and aggregation of
mechanoreceptor signals to form tactile percepts. The size of the stimulus (focus)
depends on the ultrasound wavelength (e.g. 8.5mm for 40kHz ultrasound (Hoshi
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(a) (b)

Fig. 2.11.: (a) Illustration of a ultrasonic phased array board modelled after the Ultraleap
STRATOS Explore (USX). (b) Transducer activation is modulated to achieve
maximal pressure intensity at desired locations in space.

et al., 2010), cf. Fig. 2.12). Although the force output of these phased arrays is
comparatively lower to other mid-air devices (16mN vs. 1N for devices based on air
flows), their low latency, high spatiotemporal resolution and large interaction space
make ultrasonic phased arrays a reliable and appealing technology for mid-air
tactile applications. As a result, these devices have grown in popularity over the
past decade.

The mid-air interaction capabilities of ultrasound haptics have enabled some un-
precedented applications. One of them is the interaction with floating images
produced with 3D displays (Monnai et al., 2014), giving to the user the illusion
of seeing and touching a virtual object in a fully co-located and natural manner.
By tiling ultrasound phased arrays in 3D, the approach has been extended to en-
able tactile interaction with holograms (Inoue et al., 2015). Beyond conveying
tactile feedback, UPAs have also been applied to applications such as acoustic
levitation (Iodice et al., 2018; Morales et al., 2019; Morales González et al.,
2020), parametric audio generation (Shakeri et al., 2019) and even wireless power
transfer (Morales González et al., 2021).

The generation of tactile percepts using ultrasound devices is still a largely unknown
process. In the absence of a computational model that maps activation patterns
of transducers to tactile percepts, researchers have explored different high-level
metaphors to command ultrasound devices. To date, two control metaphors prevail:
amplitude modulation (AM) and spatiotemporal modulation (STM).
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(a) (b)

Fig. 2.12.: Spatial distribution of the acoustic radiation pressure around a focal point
centered at 20mm of distance of the UPA. The size of the main lobe (i.e. the
lobe containing the higher power) depends on the ultrasound wavelength λ. In
this case, λ = 8.58mm. (a). Scan along one axis of the focal plane. (b). Scan
along the two axes of the focal plane. Source: Hoshi et al., 2010.

2.2.1 Amplitude Modulation

According to the Hyugens-Fresnel principle and the principle of superposition of
waves, the pressure wave at an arbitrary point in space x can be expressed as a
complex-valued linear function of the amplitudes and phases of the waves emitted
by the transducers in a free field:

p(x) =
∑
i

D(θi)
ri

e−(β+jk)ripi (2.12)

where pi is the acoustic pressure produced by transducer i located at a distance
ri and angle θi emitting a signal with wavenumber k. Physical characteristics
of the transducer and the medium are parameterized through the directionality
function D(θ) and exponential decay coefficient β which depends on acoustic wave
frequency and air humidity. Given target pressure waves at a set of focal points,
it is possible to obtain the optimal emitted waves pi by solving a phase retrieval
problem. However, typically only the target amplitudes are given, which makes the
problem nonlinear.
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Iwamoto et al. (2008) first demonstrated the capability of UPAs to focus sufficient
acoustic radiation pressure to induce a haptic sensation in a localized area on the
hand. Subsequently, Hoshi et al. (2010) extended this achievement to vary the
focal location over time, producing the sensation of a moving stimulus. These early
works used a precomputed time-varying solution for ultrasound phases given a
desired spatial amplitude distribution. Because these phases must be determined
by means of a non-linear quadratic optimization procedure, the calculations were
not amenable to real-time control. Inoue et al. (2015) compared various solutions
from the field of scattering diffraction imaging, while Long et al. (2014) designed
an efficient solution that takes advantage of the linearity of the complex-valued
eigenproblem associated with the desired focal point intensities.

Although the induced skin deflection is slight (in the order of micrometers), it is
enough to trigger the mechanoreceptors embedded in the skin to evoke a tactile
sensation. However, mechanoreceptors undergo rapid adaptation to stimuli in
this frequency range, resulting in perception only at the onset and offset of the
acoustic waves produced by spatially stable focal points (Frier, 2020). Researchers
overcame this limitation by modulating the intensity of the field at a frequency
to which the skin’s mechanoreceptors (principally the Pacinian corpuscles) are
sensitive, approximately in the range of 200 to 250 Hz.

Considering the focal point location as stable relative to this frequency range, this
method later became known as amplitude modulation (AM). While this method is
effective for local stimulation, it suffers from limitations. One of the most evident
ones is that modulation induces a perceivable vibration on skin. Another limitation
is that multiple focal points are necessary to produce stimuli covering surfaces
larger than the focal size, resulting in a drastic reduction in the device’s output
capabilities when limited by safety constraints.

2.2.2 Spatiotemporal Modulation

To overcome the limitations of AM, researchers explored alternative modulation
techniques. Korres and Eid (2016) presented a display method in which focal point
amplitudes are relatively stable but their location is modulated at much higher rates.
This approach, later dubbed spatiotemporal modulation (STM) by Kappus and Long
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(2018), relies on the phenomenon of persistence of perception, which is related to
the temporal resolution of the sense of touch: by rapidly and repeatedly moving
a focal point across a given path, a continuous tactile perception is produced.
Kappus and Long demonstrated that such paths could produce recognizable tactile
shapes.

This control strategy enjoys several advantages over AM. The absence of pressure
modulation results in a perceptually smoother stimulation. Furthermore, STM
achieves larger coverage with a lower number of focal points when compared to
AM, resulting in a perceivable stronger stimulation. However, since STM introduces
a dependency between the refresh rate and the velocity of the focal point, new
research is needed to understand the tactile perception induced by this method
and how these parameters can be tuned to achieve optimal sensitivity.

2.2.3 Perceptual Effects

The perception of tactile stimulation produced by focused ultrasounds is widely
influenced both by the spatial-temporal characteristics of the acoustic stimulus
and by the structure and mechanical properties of the skin. The appearance
and propagation over time of the ultrasound-induced mechanical waves plays an
important role in the overall perceived intensity of the stimuli. However, this
process is the result of complex interactions that remain not fully understood due
to the difficulty in observing and capturing the evolution of these waves in real
life. In the absence of a system that allows precise measurement of mechanical
interactions and the consequent activation of skin mechanoreceptors, researchers
have tried to approach the problem from a perceptual point of view.

Several works have analyzed perceptual aspects of ultrasound haptic stimulation,
as well as performance implications of algorithmic parameters. Carter et al. (2013)
studied how to position secondary focal points of low pressure to eliminate spurious
pressure maxima within the device workspace. They also analyzed the ability of
subjects to discriminate focal points. Wilson et al. (2014) studied the ability of
subjects to locate focal points and the perception of motion, and they found, for
example, an average localization error of 8.5mm. Hasegawa and Shinoda (2018)
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have analyzed the pressure fields actually produced by ultrasound phased arrays,
as well as perceptual detection thresholds.

Recent studies have analyzed the effects of rendering parameters of spatiotemporal
modulation. Frier et al. (2018) found that there is some optimal focal point speed
(between 5 and 8 m/s in their experiments) to maximize skin sensitivity. Recently,
they have analyzed the combined influence of spatial and temporal sampling in
spatiotemporal modulation (Frier et al., 2019). R. Takahashi et al. (2018) proposed
a method that falls in between AM and STM, wherein they use a spatial modulation
of the constant-intensity focal point at 1000 Hz to produce a vibration signal in
a localized range. They report lower detection thresholds than for a single AM
point.

Howard et al. (2019) investigated the detection and discrimination of line patterns
with respect to intensities, as well as the discrimination of bumps and holes based
on varying intensity over a line. They also found that STM line patterns had a
lower detection threshold than a single AM point. Finally, Reardon et al. (2019)
captured the wave propagation induced in the palm by ultrasound haptics using an
optical vibrometer, and found that waves above 4 m/s induced compression. In this
regime, it was found that inhibiting these waves reduced motion perception, thus a
connection between wave propagation in the skin and perception was inferred.

2.3 Coupling Fluids and Haptics

Haptic rendering of interaction with fluids has received large attention. The various
existing methods address the challenge of running interactive fluid simulations, and
propose different coupling strategies between the haptic device and the simulated
media.
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2.3.1 Haptic Rendering of Fluid Media

Most of the works addressing haptic rendering of fluid media revolve around the
use of tool-like devices. Baxter and Lin (2004) developed a 2D fluid simulation
with haptic interaction, where they applied to the device the forces aggregated on
the boundary of the simulated tool. Dobashi et al. (2006) developed a method that
combines a real-time computation of linear force terms with precomputed nonlinear
force terms. Mora and Lee (2008) computed a real-time 3D fluid simulation, and
mapped viscous forces to the haptic device.

The advent of GPUs as computational platforms has allowed richer interactive
methods. Yang et al. (2009) leveraged this technology and implemented methods
to accumulate grid forces on the simulated tool directly on the GPU. Cirio, Marchal,
Otaduy, et al. (2013) performed a particle-based simulation of the fluid on the
GPU, and used a virtual coupling method to transfer fluid forces on the simulated
tool to the haptic device.

Rendering tactile interaction with virtual environments (including fluids) using
ultrasonic haptics can be formulated as a problem of dynamically reproducing
a pressure field on the user’s skin. However, neither AM nor STM alone satisfy
the needs of our rendering problem, as they cannot reproduce a spatially varying
pressure field.

In Chapters 4 and 5 we address this problem by introducing two rendering al-
gorithms that dynamically map arbitrary target pressure fields to AM and STM
control metaphors respectively. Our approaches pose this mapping as optimization
problems that take into account known perceptual and technical limitations of both
methods, resulting in an optimal set of focal points and paths that best reconstruct
the target pressure field. We apply the resulting methods to the interaction with
gaseous media, which we find can be reasonably matched even under the power
limitations of current ultrasound hardware.

Prior to our work, haptic interaction with fluid media has been explored exclusively
using tool-based interaction, with no work addressing direct-touch interaction, let
alone mid-air interaction using ultrasound haptics. One tangentially related work
is the use of vibrotactile feedback to render the interaction with splashing fluids,

40 Chapter 2 Background



conveying the vibrations produced by air bubbles (Cirio, Marchal, Lécuyer, et al.,
2013). Following the publication of our work, Jang and Park (2020) presented
a method for interacting with SPH-based liquids through the optimization of AM
focal points, employing a hill-climbing algorithm.

2.3.2 Simulation of Virtual Clay

Clay is a viscoplastic material whose behavior resembles both a solid and a fluid.
It exhibits microscopic material bonds that preserve shape, but these bonds are
fragile and the material flows even under small stress, although with very high
viscosity. Due to this complexity, simulation of clay is a computationally challenging
problem, and existing interactive methods barely approximate its true behavior.
Nevertheless, multiple works have attempted to partially model the behavior of
clay in VR applications, including haptic feedback.

Early models for VR-based modeling of clay used combinations of spline surfaces
and voxelized volumes (Krause & Lüddemann, 1997). To counteract the high cost of
voxelization, McDonnell et al. (2001) proposed adaptive volumetric representations.
They combined interactive editing capabilities with 3-Degree-of-Freedom (DoF)
haptic feedback.

A critical challenge of clay-like materials is the combination of elastic behavior with
plastic flow, which is essential for its modeling capabilities. Several works combine
global (i.e., mesh-based elastic models) with local deformation (i.e., voxel-based
flow models) (Dewaele & Cani, 2003). These models have also been integrated
with 3-DoF haptic feedback, and augmented with end-effectors with pressure
sensors, to better mimic the interaction of the hand with the clay material (Pihuit
et al., 2008).

There are also models that address modeling clay on a potter’s wheel, and leverage
the revolution shape of objects, but limit general interaction. Some methods
use spline surfaces combined with haptic feedback and augmented reality (Han
et al., 2007), and others define circular sector elements, which also drive haptic
feedback (Lee et al., 2008). It is also possible to add volume preservation to
cylindrical elements (Chaudhury & Chaudhuri, 2014).
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Despite all the efforts discussed above, the physical behavior of clay is only partially
approximated in previous VR applications. No previous interactive simulation
method reproduces the highly viscous flow and ductile fracture of clay-like materi-
als. PBD and PBF methods (Bender et al., 2014; Macklin & Müller, 2013; Müller
et al., 2006), as discussed above in Section 2.1.2, offer a potential solution due to
their efficiency and flexibility.

One possible approach to model clay with PBD would be to consider it an elastic
solid. Some works add efficient cutting to viscoelastic PBD solids (Berndt et al.,
2017; Xu et al., 2018). However, clay exhibits a fluid-like behavior that allows
material to merge, and these methods do not support merging. The other approach
to model clay with PBD would be to consider it a viscous fluid. Again some works
propose models for efficient viscosity simulation within PBF (T. Takahashi et al.,
2014), but they do not reach the extreme viscous behavior of clay.

In Chapter 6 we propose a simulation model that allows the user to conform, split,
and merge virtual clay much like in the real world. We leverage on a simplified
version of the method presented in Chapter 3, augmented with an elastoplasticity
model to capture the main features of clay-like materials. We couple this model
with an existing natural hand simulation model to achieve bidirectional coupling,
and use the resulting interaction forces to command an ultrasound-based tactile
rendering algorithm based on the method presented in Chapter 4.
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Simulation of Viscoelastic
Fluids

3

Many real-world substances and materials exhibit a viscous fluid or viscoelastic
behavior. However, simulation of high viscosity is a computationally challenging
problem, since it requires implicit formulations in order to robustly solve the nu-
merically stiff differential equations. In addition, due to the difficulty in computing
the strain of a fluid, numerical drift turns into perceptible loss of viscoelasticity. A
common alternative to the solution of stiff equations is to model stiff properties as
constraints, thereby effectively removing degrees of freedom from the simulation.

In this chapter, we introduce our constraint-based model of viscoelasticity. We first
describe a constitutive model of viscoelasticity in polymeric fluids (Section 3.1),
which is the stress-based counterpart for our constraint-based formulation. Then,
we describe the derivation of implicit conformation constraints acting on fluid
velocities, as well as the parameters of our model.

With our constraint-based viscoelasticity model, simulation efficiency is determined
by the choice of constrained dynamics solver. In Section 3.2, we propose a doubly
constrained position-based dynamics (DC-PBD) solver, which inherits the robustness
under constraint nonlinearity and the per-iteration efficiency of the original PBD
method (Müller et al., 2006), but exhibits improved stability under velocity-based
constraints, such as those in our viscoelasticity formulation, specially with large
time steps.

As a corollary, while others have also accounted for viscosity in PBD solvers (Al-
duán et al., 2017; Macklin & Müller, 2013; T. Takahashi et al., 2016; T. Takahashi
et al., 2014), our method is derived from a constitutive model, hence it allows
physics-based parameterization. Its range of behaviors is also superior, compara-
ble to the one obtained with methods that also compute viscoelastic stress from
a discretization of constitutive models, albeit at a much lower computational
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cost. In Section 3.3, we describe in detail the integration of our viscoelasticity
formulation in a position-based fluids (PBF) model (Macklin & Müller, 2013).

We show results that range from interactive simulation of viscoelastic effects
(Fig. 3.7) to large-scale simulation of high viscosity with competitive performance
(Fig. 3.10). The materials exhibit the classic buckling and coiling effects produced
by viscoelasticity (Fig. 3.9), and we also show how our method can be integrated
seamlessly in rich multiphysics scenarios (Fig. 3.1).

3.1 Constitutive Model of Polymer Conformation

In polymeric fluids, the dissolved polymer endows the fluid with viscoelastic proper-
ties. Due to friction between the fluid and the polymer, the elasticity of the polymer
is transmitted to the fluid, producing the overall viscoelastic behavior (Bird et al.,
1977). This behavior can be represented using a constitutive model that relates
viscoelastic stress to the change in a polymer conformation tensor Q (Deshpande
et al., 2010).

The polymer conformation model defines a reference value Q̄ = I for the con-
formation tensor at rest state, and reduces its time evolution to the solution of
a first-order system with relaxation time constant τ = b

k , which amounts to the
ratio between the viscous friction b between the polymer and the fluid, and the
stiffness k of the polymer. The first-order time evolution of the conformation tensor
is defined as:

DQ
Dt

= −1
τ

(
Q− Q̄

)
. (3.1)

In this equation, the time evolution of the conformation tensor is expressed using
the upper convected derivative DQ

Dt , which is a derivative that takes into account
local fluid translation and rotation. It is defined as:

DQ
Dt

= DQ
Dt
−Q∇u− (∇u)T Q, (3.2)
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Fig. 3.1.: A complex multiphysics simulation involving viscoelastic fluids, rigid bodies, and
deformable bodies. We simulate whipped cream and strawberry syrup efficiently
using our novel viscoelasticity model based on conformation constraints. The
complete scene consists of 150,000 particles and runs at 1.13 seconds per frame.
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where DQ
Dt is the standard convective derivative and u is the fluid velocity. From

(3.1) and (3.2), on a Lagrangian setting, the conformation tensor rate can be
computed as:

DQ
Dt

= Q∇u + (∇u)T Q− 1
τ

(
Q− Q̄

)
. (3.3)

The constitutive model of polymeric fluids is complete with the definition of the
viscoelastic stress σ as:

σ = k c s
(
Q− Q̄

)
, (3.4)

where s is a scale factor that depends on the geometry and structure of the polymer,
c is the polymer concentration, and k is the polymer’s stiffness, as mentioned above.
This stiffness is typically a function of temperature.

By plugging the viscoelastic stress into the equation of fluid momentum conserva-
tion, we would obtain an upper convected Maxwell model for a polymeric fluid.
Instead, we formulate viscoelasticity as a constraint on the conformation tensor, as
we show next.

3.1.1 Implicit Conformation Constraint

To model high viscoelasticity, we propose a constraint that preserves the rest-state
value of the conformation tensor, i.e.,

C(Q) = Q− Q̄ = Q− I = 0. (3.5)

On each simulation step, we wish to enforce this constraint implicitly, i.e., on the
simulation state at the end of the time step. We do this by combining the constraint
equation (3.5) with implicit integration of the conformation tensor rate (3.3). We
denote with a superscript 0 variables at the beginning of the time step, e.g., Q0 is
the conformation tensor at the beginning of the time step. Then, the conformation
tensor at the end of the time step can be obtained through implicit Euler integration
of (3.3), by solving:

Q−Q0

∆t = Q∇u + (∇u)T Q− 1
τ

(
Q− Q̄

)
. (3.6)
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Plugging the tensor constraint (3.5) in this equation, we obtain an implicit confor-
mation constraint on fluid velocities:

C(u) = Q0 − Q̄ + ∆t
(
∇u + (∇u)T

)
= 0. (3.7)

Our simulation loop for viscoelastic fluids proceeds on each time step by computing
a dynamic update subject to the implicit velocity-based constraint (3.7). For this
purpose, we use the constrained dynamics solver proposed in Section 3.2. At the
end of each time step, we update the conformation tensor by solving for Q in (3.6).
In the particular case when τ → 0, we simply set the tensor to be Q = I.

The relaxation time τ affects the viscoelasticity behavior of the fluid. As τ → 0,
the internal elastic forces of the polymer dominate over friction forces with the
fluid (k � b), and the polymer recovers quickly its structure. In the viscoelastic
fluid simulation case, the conformation tensor Q barely changes over time, and
the conformation constraint (3.7) becomes effectively a null-strain-rate constraint.
The fluid appears highly viscous. Conversely, as τ → ∞, the friction forces of
the polymer with the fluid dominate over its internal elastic forces (b � k), and
the polymer fails to recover its structure. In the viscoelastic fluid simulation, the
conformation tensor Q varies over time as a result of the strain rate according to
(3.3), and the conformation constraint (3.7) acts on fluid velocities to remove the
existing conformation change. The fluid appears elastic. In the constitutive model
of polymer conformation, the viscoelastic stress depends also on a compliance
α = 1

k c s according to (3.4).

Later in Section 3.3, we show how to incorporate this compliance into our con-
strained dynamics solver as a relaxation coefficient for the conformation constraint
(3.7). The compliance α defines the fluidity of the model. With two physically
based parameters, τ and α, we obtain a palette of materials that spans elastoplastic,
highly viscous, and inviscid fluids, as shown in Fig. 3.2. The influence of material
parameters on the fluid’s behavior is evidenced even on simple scenarios, such
as impact (Fig. 3.3) or liquid rope coiling (Fig. 3.4). In these examples, material
colors are chosen by interpolating the colors in the inset according to the parameter
settings. Even on moderately complex scenes (more than 10 000 particles), the
diverse materials can be simulated interactively.
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Fig. 3.2.: With two physically based parameters, τ and α, we obtain a palette of materials
that spans elastoplastic, highly viscous, and inviscid fluids.

Fig. 3.3.: Interactive viscoelastic cubes are dropped on the ground. By varying two
physics-based parameters, the conformation relaxation time constant τ and the
compliance α, we achieve materials that bounce elastically (yellow), appear
highly viscous (magenta), or splash as an inviscid liquid (cyan).

48 Chapter 3 Simulation of Viscoelastic Fluids



Fig. 3.4.: We compare liquid rope coiling with different material parameters. In the top
row, varying the compliance α, with relaxation time constant τ = 0.15 in all
cases. In the bottom row, varying τ , with α = 0 in all cases. The examples are
colored by interpolating the material color palette shown in Fig. 3.3.
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3.2 Constrained Dynamics Solver

As discussed in Chapter 2, PBD can be regarded as an integration scheme for
constrained dynamics. In this section, we propose a doubly constrained PBD
(DC-PDB) solver that handles also velocity-based constraints, such as those in our
viscoelasticity model. DC-PBD projects both velocities and positions to the velocity-
based constraints, and in this way it improves convergence and stability. We start
the section with a summary of the regular PBD solver, and then we describe the
differences in our DC-PDB approach.

3.2.1 PBD Solver

Given a dynamic system with mass M, external forces f , and position-based con-
straints Cx, the PBD method executes each simulation step as follows. Starting
from positions and velocities (x0,u0), it first computes a constraint-free state
(x∗,u∗) using symplectic Euler integration. Then, it projects the positions to the
constraints, and computes velocities through finite differences between final and
initial positions, to obtain the state (x,u) at the end of the time step. The PBD
solver is summarized in Algorithm 1.

PBD succeeds to robustly and efficiently model stiff potentials as position-based
constraints. Moreover, the recent XPBD extension adds relaxation to the constraint
projection in order to model constraint compliance. However, PBD is not naturally
designed to handle efficiently velocity-based constraints, such as the viscoelasticity
constraint (3.7). In addition, constraint nonlinearity, such as the one introduced
by the SPH kernels used in PBF, may complicate the convergence of Jacobi or
Gauss-Seidel solvers.

3.2.2 Doubly Constrained PBD

Given the generic dynamic system described above, we propose a constrained
dynamics algorithm that handles both position-based constraints Cx and velocity-
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ALGORITHM 1: PBD step

Input: Initial state (x0,u0).
Output: Updated state (x,u).

Compute constraint-free state
u∗ ← u0 + ∆tM−1 f(x0)
x∗ ← x0 + ∆tu∗

Project positions
x← project x∗ to Cx(x) = 0
u← x−x0

∆t

based constraints Cu efficiently. The key difference is to project both positions and
velocities to the constraints. A similar idea is applied by the RATTLE algorithm for
molecular dynamics (Andersen, 1983), which is a constrained-dynamics version
of the velocity-Verlet integrator. But, unlike RATTLE, we exploit the robustness of
PBD by prioritizing the projection of positions, and computing velocity estimates
through finite differences of safe positions.

We start the DC-PBD solver by computing a constraint-free state (x∗,u∗) using
symplectic Euler integration, same as in regular PBD. Then, we project the velocities
to the velocity-based constraints Cu, and we update particle positions with the
resulting velocity correction. Altogether, we obtain a velocity-safe state (x∗∗,u∗∗).

To conclude, we compute the final, position-safe state (x,u), by projecting the
positions to both the position-based and velocity-based constraints. To do this, we
need to transform the velocity-based constraints Cu into position-based constraints,
which are added to the regular position-based constraints Cx. We define the
velocities through finite differences between the initial and final positions, i.e.,
u = x−x0

∆t , and thus we can turn the velocity-based constraints into position-based
constraints of the form C̃u(x) ≡ Cu

(
x−x0

∆t

)
= 0.

The DC-PBD solver is summarized in Algorithm 2. We compute the position
projection using Fast Projection, just like in regular PBD. The velocity projection,
on the other hand, is a positive semi-definite linear problem, similar in structure
to the one tackled by Peer et al. (2015). Same as they do for generic cases, we
solve it using Jacobi iterations. However, unlike the position projection, where
Jacobians are recomputed after each Jacobi iteration, in the velocity projection the
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Jacobians are constant and can be computed just once per time step. We provide
full details of the application of the DC-PBD solver to viscoelasticity constraints in
Section 3.3.

ALGORITHM 2: DC-PBD step

Input: Initial state (x0,u0).
Output: Updated state (x,u).

Compute constraint-free state
u∗ ← u0 + ∆tM−1 f(x0)
x∗ ← x0 + ∆tu∗

Project velocities
u∗∗ ← project u∗ to Cu(u∗∗) = 0
x∗∗ ← x∗ + ∆t (u∗∗ − u∗)

Project positions
x← project x∗∗ to Cx(x) = 0 and C̃u(x) ≡ Cu

(
x−x0

∆t

)
= 0

u← x−x0

∆t

To evaluate our DC-PBD solver, we have run a test where we drop on the ground a
cube with full viscosity constraints and no compliance (Fig. 3.3, with τ = 0 and
α = 0). We have computed the RMS error of particles in the cube w.r.t. their
undeformed positions, as a global measure of constraint drift. We have compared
constraint drift with our DC-PBD solver vs. position projection of both position-
based and velocity-based constraints (which can be regarded as an improved
version of regular PBD). Position projection alone requires a time step smaller
than 30 ms to ensure stability. With our DC-PBD solver, on the other hand, the
simulation remains stable with time steps twice as large, i.e., 60 ms. We have also
found that the number of Jacobi iterations affects the amount of constraint drift
(with lower drift in DC-PBD under the same total iteration count, as shown in the
plots in Fig. 3.5), but it has little effect on stability.

Our conclusions about the reasons for the improved stability and robustness of DC-
PBD are the following. Projection of particle positions is nonlinear, and nonlinear
Jacobi may have trouble converging under large time steps. Projection of velocities,
on the other hand, is linear, and linear Jacobi turns out more robust. The position
correction in the “Project velocities” step in Algorithm 2 removes much of the
position deviation, and further steps of nonlinear position projection are less prone
to robustness problems induced by nonlinearity.
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Fig. 3.5.: Comparison of constraint drift with our DC-PBD solver (with velocity and posi-
tion projection) vs. position projection alone. We drop a fully viscous cube on
the ground (Fig. 3.3), and we measure the RMS error of particle positions w.r.t.
an undeformed cube as the simulation evolves. Position projection alone suffers
higher error under the same total iteration count, and it requires a smaller time
step to be stable (30 ms, vs. 60 ms in the case of DC-PBD).

3.3 Viscoelastic Position-Based Fluids

We integrate conformation constraints in a PBF model to simulate viscoelastic
incompressible fluids. However, unlike the original PBF model, we employ our
DC-PBD solver for improved convergence, and we adopt XPBD to support constraint
compliance. We start this section by outlining the complete simulation model, and
we then describe in detail how to handle conformation constraints for velocity and
position projection respectively.

3.3.1 PBF Model

PBF (Macklin & Müller, 2013) simulates fluids using a SPH discretization (Mon-
aghan, 1992), with incompressibility as a density constraint on particle positions.
Following the SPH discretization, given a set of particles, each one with mass mj ,
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attribute value aj , and position xj , the value of the attribute a at an arbitrary
position xi is evaluated as:

a(xi) =
∑
j

mj

ρj
ajWij , (3.8)

with Wij = W (xij) = W (xi − xj) being the evaluation at xi of a smoothing kernel
with support radius h and centered at xi, and ρj the density field evaluated at xj .
We employ the SPH-based attribute evaluation for the computation of the fluid
velocity in conformation constraints (3.7).

Combining incompressibility and viscoelasticity, the DC-PBD solver proceeds as
follows. For the position projection step of DC-PBD, we enforce both density
and conformation constraints on particle positions. In Section 3.3.3, we describe
how we formulate position-based conformation constraints per simulation particle.
We have experimented with various strategies to combine incompressibility and
viscoelasticity in the position projection, and we have observed best convergence
by staggering one Jacobi iteration of incompressibility over all particles with one
Jacobi iteration of viscoelasticity over all particles.

For the velocity projection step of DC-PBD, we enforce only conformation con-
straints on particle velocities, as we describe next in Section 3.3.2. Once this is
done, we update the conformation tensor Q on each particle by solving the linear
system (3.6).

Both for the position and velocity projection steps, we adopt the XPBD method (Mack-
lin et al., 2016), which modifies the original PBD iterations to support constraint
compliance, as also done in other constrained dynamics methods (Tournier et al.,
2015). In our viscoelasticity model, constraint compliance allows us to account for
the compliance α of viscoelastic stress defined in Section 3.1.1.

3.3.2 Discrete Velocity-Based Constraints

To implement the velocity-based, implicit conformation constraint (3.7) within the
PBF framework, we express the constraint on each simulation particle. To do this,
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we compute the fluid velocity ui at the position of the ith particle using the SPH
formulation (3.8) and, accordingly, we evaluate the SPH velocity gradient:

∇ui =
∑
j

mj

ρj
uji∇W T

ij , (3.9)

with uji = uj − ui. Since the conformation tensor Q is symmetric, we rearrange it
as a six-dimensional vector q:

q = (Qxx, Qyy, Qzz, Qxy, Qxz, Qyz)T ; q̄ = (1, 1, 1, 0, 0, 0)T .

Rewriting the conformation constraint (3.7) using the vector notation, and plugging
in the expression of the velocity gradient (3.9), we obtain the discrete version of
the velocity-based constraint:

Ci(u) = q0
i − q̄ + ∆t

∑
j

mj

ρj
Aij uji = 0, (3.10)

with Aij =



2∂xWij 0 0
0 2∂yWij 0
0 0 2∂zWij

∂yWij ∂xWij 0
∂zWij 0 ∂xWij

0 ∂zWij ∂yWij


.

We apply this constraint to each simulation particle in the velocity-projection step
of our DC-PBD solver (see Section 3.2.2). Each Jacobi iteration with XPBD yields
the following update of Lagrange multipliers and particle velocities, respectively:

∆λi =
(

diag
(
Ji M−1 JTi

)
+ α

∆t I
)−1 (

−Ci(u)− α

∆t λi
)
, (3.11)

∆ui = β

ni

∑
j

JTji ∆λj . (3.12)

We relax the Jacobi update with a factor β
ni

to ensure convergence, where ni is the
size of the particle neighborhood and β is a scaling coefficient to avoid excessive
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relaxation (β = 5 in our examples). In our implementation, we approximate the
constraint Jacobians as:

Jik = ∂Ci(u)
∂uk

=

∆t mkρk Aik if i 6= k

−∆t
∑
j
mj
ρj

Aij if i = k.
(3.13)

Note that these Jacobians remain constant during the whole velocity projection.
The constraint response update (3.11) includes the compliance α defined in Sec-
tion 3.1.1. In the original XPBD formulation (Macklin et al., 2016) the compliance
is applied to constraints formulated on positions, and hence it is scaled by a factor

1
∆t2 . In our setting, with constraints formulated on velocities, it is scaled by 1

∆t
instead. Fig. 3.4 and Fig. 3.9 show the effect of varying the compliance on two
different examples.

3.3.3 Discrete Position-Based Constraints

For the position-projection step of our DC-PBD solver, we wish to rewrite the
discrete velocity-based conformation constraint (3.10) as a function of particle
positions, i.e., in the form C̃i(x) = 0. In principle, we could do this by approximat-

ing particle velocities through finite differences of particle positions, uj = xj−x0
j

∆t .
However, this approach would fail to preserve angular momentum and would
damp rotational motion of the fluid. At the core of the problem lies the inability of
SPH to correctly reconstruct linear fields (e.g., uniform angular velocity). A similar
observation was made by Becker et al. (2009) for the computation of deformation
gradients and, similar to their corotational deformation gradient, we derive a coro-
tational formulation of the velocity gradient (3.9) from particle positions. Fig. 3.6
shows an example simulation of a rotating block with and without our corotational
discretization. The difference in rotational damping is evident.

Following Becker et al., 2009, we estimate for each particle the best-fit rotation Ri

to the deformations of its neighbor particles:

Ri = arg min
∑
j

∣∣∣Ri (x0
j − c0

i )− (xj − ci)
∣∣∣2 , (3.14)
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where ci is the center of mass of the neighbor particles. Then, for the estimation
of the velocity gradient of the ith particle, we define corotational finite-difference
velocities for all particles in its neighborhood, by compensating for the rotation Ri.
Specifically:

uj =
xj − xrj

∆t , with xrj = ci + Ri (x0
j − c0

i ). (3.15)

By substituting this velocity computation in the velocity gradient (3.9), we rewrite
(3.10) to obtain the position-based expression of the discrete conformation con-
straint:

C̃i(x) = q0
i − q̄ +

∑
j

mj

ρj
Aij

(
xji − xrji

)
= 0, (3.16)

We apply this constraint to each simulation particle in the position-projection step
of our DC-PBD solver (see Section 3.2.2). Each Jacobi iteration with XPBD yields
the following update of Lagrange multipliers and particle positions, respectively:

∆λi =
(

diag
(
J̃i M−1 J̃Ti

)
+ α

∆t2 I
)−1 (

−C̃i(x)− α

∆t2 λi
)
, (3.17)

∆xi = β

ni

∑
j

J̃Tji ∆λj . (3.18)

Fig. 3.6.: Plot of angular momentum of a rotating block, with and without our corotational
formulation. With a non-corotational velocity gradient, rigid body motion is soon
damped. With our approach, residual damping is due only to approximation
errors.
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The Jacobians are defined as J̃i = 1
∆t Ji, and they need to be recomputed after

each Jacobi update of particle positions.

3.4 Results

We have tested our viscoelasticity model on multiple benchmarks. They were all
executed on a Hexa-core Intel i7-3930K CPU with 32 GB of RAM, and a NVIDIA
GeForce 1070 GTX GPU with 1920 CUDA Cores. The PBF model with the DC-PBD
solver is programmed entirely on the GPU. Table 3.1 shows the major performance
statistics and parameter settings for all the benchmarks (all rendered at 30 fps).
Next, we discuss the results.

Scene & Fig Particles Time step Steps/frame Iters Time/frame τ α

Blocks
(Fig. 3.3) 10k 1/240 8 20 0.16s See Fig.
Coiling

(Fig. 3.4) 89k 1/240 8 40 1.08s See Fig.
Interactive

(Fig. 3.7, Fig. 3.8) 15k 1/200 3 8 0.03s 0.1 0 ≤ α ≤ 1
Waffle

(Fig. 3.9) 80k 1/300 10 40 1.42s 0.1 0†, 0.01††

Honey
(Fig. 3.11) 105k 1/300 10 10 0.15s 0 0.005

Cake
(Fig. 3.1) 150k 1/750 25 15 1.13s 0.1†, 0.5‡ 0†, 0.015‡

Armadillos
(Fig. 3.10) 12M 1/150 5 15 19s 0.5 0.01

Tab. 3.1.: Parameter values and performance statistics for all our benchmarks (all rendered
at 30 fps). The table lists: the total number of particles, the time step ∆t, the
amount of steps per frame, the number of iterations of the viscoelasticity
constraint projection per step, the total time per frame (in seconds), and τ and
α values. Some materials: † thick cream; †† runny cream; ‡ strawberry syrup.
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Interactive scenes

The scenes shown in Fig. 3.7 and Fig. 3.8 demonstrate the suitability of the DC-
PBD solver in interactive applications where very small time steps cannot be used.
The improved convergence and stability enables even interactive performance on
moderately complex scenarios. Both the hand-and-bowl scene and the ice cream
scene consist of 15k particles each. In these examples, we use a Leap Motion™
device to track hand motions and move a virtual hand or other objects. The tests
also show interactive modification of the material parameters, e.g., increasing the
compliance α to model ice cream melting.

Fig. 3.7.: Three screen captures of interactive manipulation of a viscoelastic fluid, con-
sisting of up to 15k particles, and simulated at 30 ms/frame. The motion of
the hands is tracked using a Leap Motion™ device, and this motion is applied
to a virtual hand and a bowl, which interact with the coiling fluid. We also
demonstrate interactive changes to material parameters.
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Fig. 3.8.: Screen captures of interactive ice cream simulation. The dispenser is controlled
interactively through a Leap Motion™ device, and ice cream is poured into the
cone. Increasing the compliance α, the ice cream melts. The scene consists of
up to 15k particles, simulated at 30 ms/frame.

Fig. 3.9.: Two types of whipped cream are poured onto a waffle, with compliance (α =
0.01) on the left, and without compliance on the right. High viscosity in the
right causes a regular coiling effect.
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Large-scale simulations

The scenes shown in Fig. 3.9, Fig. 3.10 and Fig. 3.11 represent several computation-
ally demanding benchmarks with complex behaviors. The simulation of whipped
cream poured onto a waffle (Fig. 3.9) runs up to 90k particles with a computation
time of 1.42 seconds per frame. This simulation requires high particle density to
correctly resolve the ridges on the cream’s surface. We compare two scenarios,
with the same value of relaxation time τ , but with different compliance α. With
increased viscoelasticity (i.e., lower α), the cream coils in a regular manner.

Fig. 3.10.: Massive viscoelastic simulation, with 12 million particles simulated at 19 sec-
onds per frame. This example demonstrates that our viscoelasticity model
achieves higher performance than previous methods, even on large-scale
scenes.

The massive test shown in Fig. 3.10 involves the computation of high viscoelasticity
on a large-scale scene, which replicates a benchmark tested by Peer et al., 2015.
They simulated 11 million particles at 144 seconds per frame and 50 fps. We
simulate 12 million particles at 19 seconds per frame and 30 fps. Prorating
particle count and frame-rate, our method achieves a speed-up of more than 13x,
showing that our viscoelasticity model provides superior performance to previous
approaches even on large-scale scenes. Furthermore, the simultaneous treatment
of density and viscoelasticity constraints within our solver reduces the possibility of
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Fig. 3.11.: Simulation of honey using 105k particles of viscous fluid. This test runs at
0.14 seconds per frame on average, and exhibits the characteristic buckling of
highly viscous materials.
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incompressibility drift (cf. Fig. 3.12). Note that the iterative Jacobi or Gauss-Seidel
solvers of PBD-type methods become particularly slow at such high resolutions, but
our method achieves competitive performance. Performance would suffer more,
both with our method and with the one by Peer et al., 2015, on taller hydrostatic
columns.

The pouring honey in Fig. 3.11 is simulated using 105k particles of viscous fluid,
rendered with translucent material. This test runs at 0.14 seconds per frame on
average, and exhibits the characteristic buckling of highly viscous materials.

Multiphysics simulation

One of the features of the PBD-type constrained dynamics solvers is that they can
easily accommodate objects and materials with diverse properties. In the scene
shown in Fig. 3.1, we simulate two types of viscoelastic materials (whipped cream
and strawberry syrup) using our conformation constraints, rigid chocolate letters
using shape-matching constraints, and soft flowers using distance constraints. The
complete scene consists of up to 150k particles and is simulated in 1.13 seconds
per frame.

Discussion

In our examples, we have demonstrated that the proposed viscoelasticity model
covers efficiently a broad set of simulation scenarios, from interactive scenes to
large-scale scenes.

To the best of our knowledge, we have shown unprecedented viscous and vis-
coelastic interactive simulations, with a combination of high viscosity and scene
complexity (i.e., particle count) not possible before. Our solution also outperforms
previous methods on large-scale scenes, even though the type of constraint solver
may not be a priori best suited for such scenes. A key feature for the performance
of our solution is the efficiency and robustness of the constraint solver, which
allows time steps of moderate size, few iterations per time step, and massive
parallelization within each iteration.
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Fig. 3.12.: A beam of highly viscous material, rotating around the vertical axis in absence
of external forces, using our method (left) and a PBF simulation with a viscosity
method based on that of Peer et al., 2015 (right). The method of Peer et al.
constrains velocities successfully, but cannot remove position drift in a PBF
simulation.

Some viscosity models advocate defining viscous stress as a function of shear
rate (Peer et al., 2015; B. Zhu et al., 2015). In the purely viscous case, our model
converges instead to a null-strain-rate constraint, as discussed in Section 3.1.1. The
difference w.r.t. a null-shear-rate constraint produces a hydrostatic stress, which
acts against density changes. We have tested using shear rate constraints in our
model, and we have validated that the hydrostatic stress acts as a damping term
on density, and it helps the convergence of the incompressibility constraint. For
compressible liquids, we could perhaps add higher compliance to the hydrostatic
part of the conformation constraint, but we have not explored this avenue.

3.5 Discussion and Future Work

In this chapter, we have presented a novel model of viscoelasticity for fluid simu-
lation. Our model formulates viscoelasticity using constraints, and can be solved
efficiently within the PBD constrained dynamics framework. We have designed
viscoelasticity constraints inspired by a constitutive model of viscoelasticity for
polymeric fluids, which employs a conformation tensor with simple treatment
of purely viscous vs. elastic effects. To enable efficient and robust simulation,
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we formulate the constraints implicitly, and we describe their integration in the
state-of-the-art XPBD solver, with further improvements.

Our DC-PBD solver might be applicable to other types of constraints, beyond those
handled in our work. One such example is friction, which shares a dissipative
nature with viscosity, but incorporates constraints on the deviatoric stress. Another
example is incompressibility. Similar to the divergence-free SPH method by Bender
and Koschier, 2017, incompressibility constraints could be applied on both positions
and velocities within our DC-PBD solver.

Despite the rich effects achieved with our method and the range of materials
that can be simulated, there are still some limitations that suggest interesting
future work. Our work inherits some of the generic limitations of the PBD and PBF
approach, in particular the convergence limitations of Jacobi or Gauss-Seidel solvers.
It would be interesting to take advantage of the connection between PBD and
minimization formulations of implicit integration, to explore efficient optimization
algorithms, as done by others after the projective dynamics method (Bouaziz et al.,
2014). However, those optimization algorithms cannot be trivially extended to
fluids as they make strong connectivity assumptions (Weiler et al., 2016).

Our method cannot handle large elastic deformations accurately, which would
require storing some explicit measure of rest state. Additionally, while some of
our examples demonstrate the simulation of fine features, the ability to resolve
such fine features is eventually limited by the particle resolution of the simulation.
Fusing codimensional representations (B. Zhu et al., 2015) with constraint-based
viscoelasticity would enable even richer effects under manageable computational
cost.

To conclude, even though our method is parameterized using two physics-based
parameters, it is difficult to design them purely from measurable physical quantities
in a discretization-independent manner. Our model is derived from a constitutive
model for polymeric fluids, and the parameters could be set from geometric and
physical quantities only for such fluids. However, we apply the model to other types
of viscoelastic fluids too, and in that case the model can be regarded as empirical or
phenomenological, and parameters could be estimated from measurements. In our
examples, we have opted for an artist-driven parameter design, which nevertheless
proves effective thanks to the narrow set of parameters. Another problem of the
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parameterization is that many details of the constitutive model are reduced to just
one parameter, the constraint compliance. This limits the ability to represent non-
Newtonian fluids with complex dependence on any of these material parameters,
e.g., some pseudoplastic fluids.
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Ultrasound Rendering of
Fluids through Amplitude
Modulation

4

The advent of non-contact haptic displays has introduced new forms of interaction,
allowing users to experience tactile sensations in mid-air without the need for
holding or wearing a device. Ultrasound haptic devices are notable examples of
these displays.

They employ arrays of ultrasonic transducers as actuators, which produce high-
frequency pressure waves in the space around the device. By modulating the
activation of the transducers, it is possible to aggregate the pressure waves at
specific points in space, and thus create focal pressure points (Iwamoto et al.,
2008). Pressure reaches perceivable values at such focal points, and produces a
touch sensation in mid air.

By eliminating the need to hold or wear a haptic device, ultrasound haptics promises
the possibility of a more immersive and scalable virtual touch experience. Ultra-
sound haptics also suffers evident limitations, however. The forces they exert on
skin are subtle and cannot impose constraints on the user’s motion.

Fluids appear as an interesting phenomenon to be rendered using ultrasound
haptics, as they can be moved around without constraining the user’s motion.
When we interact with fluids, e.g., with our hands, we experience a temporally
and spatially varying pressure field on our skin. This pressure field is the combined
result of our own motion, the inherent properties of the fluid (i.e., density and
viscosity), and the dynamic state of the fluid (i.e., velocity).

Rendering the tactile interaction with fluids using ultrasound haptics can be formu-
lated as a problem of dynamically reproducing the pressure field on the user’s skin.
This problem comes with two major challenges. One is to perform a real-time fluid
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simulation with moving objects (i.e., the user’s hands) and dynamically extract the
pressure field on the skin. The other one is to dynamically optimize the actuation
of the transducers to approximate the pressure field on the skin.

The generation of tactile percepts using ultrasound devices is still a largely unknown
process. Pressure waves elicit complex mechanical interaction on skin, both in space
and time, and this mechanical interaction produces an at least equally complex
activation and aggregation of mechanoreceptor signals to form tactile percepts. In
the absence of a computational model that maps activation patterns of transducers
to tactile percepts, previous works have explored different high-level metaphors to
command ultrasound devices.

To date, two control metaphors prevail: amplitude modulation (AM) and spatiotem-
poral modulation (STM). AM controls the position and pressure intensity of focal
points to produce pressure distributions on skin, while STM controls paths of focal
points to draw shapes on skin. In both cases, the high-level control metaphor of
focal points is translated into low-level control of transducer activation patterns
through well-established optimization methods (Hoshi et al., 2010; Long et al.,
2014).

In this chapter, we study the problem of rendering interactions with virtual environ-
ments using ultrasound haptics. We approach the problem as a dynamic mapping of
virtual interactions to the control metaphors of ultrasound devices. Most previous
works have simplified this problem by displaying contact locations at maximum
intensity, either through AM or STM. On the other hand, we believe that richer
display is possible if we account for the force distributions in virtual interactions,
and not just contact locations.

We propose an algorithm for ultrasound rendering of tactile interaction with fluids
based in the AM control metaphor. We characterize the actuation of ultrasound
haptics using a set of focal points, and we optimize the location and intensity of
such focal points to best approximate the pressure field on the skin. We devise
efficient methods to extract the skin pressure field from the fluid simulation and
optimize the focal points at high update rates, and hence produce a responsive
experience while dynamically interacting with a virtual fluid.
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Fig. 4.1.: On the left image, a user interacts with a fluid simulation. His hand is tracked
and mapped to a virtual hand that stirs the simulated fluid. We propose a novel
tactile rendering algorithm that extracts the pressure field on the virtual hand
(bottom right), and optimizes a pressure field (top right) that is rendered to
the user with the ultrasound phased array shown in the left image.

We have implemented our ultrasound tactile rendering method on an Ultrahaptics
STRATOS device ( Fig. 4.1). We demonstrate example interactions where the user
interacts with a fluid container of 100× 100× 100 cells, with the fluid simulation
running at 90Hz and tactile rendering at 30Hz.

4.1 Rendering Based on Pressure Field
Optimization

Without loss of generality, we assume that the user interacts with the simulated
fluid using one hand. Then, the hand of the user is tracked in real-time, and a
virtual replica of the hand is moved within the fluid simulation. The motion of the
virtual hand, together with the properties and the motion of the fluid, produce a
temporally and spatially varying pressure field on its surface. Ultrasound phased
arrays are capable of producing a spatial pressure field. Therefore, we choose to
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render the tactile interaction between the user and the simulated fluid by matching
the pressure field produced by the ultrasound device to the pressure field on the
user’s virtual hand.

We start this section by characterizing the pressure field produced by the device,
according to the control method of choice. Then, we define the target pressure
field, which is constrained to the surface of the hand visible from the device. Finally,
we formulate an optimization problem to compute the rendering output, and we
provide an efficient solution algorithm.

4.1.1 Command and Stimuli of Ultrasound Haptic Devices

As discussed in Section 2.2, ultrasound phased arrays can be commanded following
two high-level command metaphors: amplitude modulation (AM) and spatiotempo-
ral modulation (STM). In our rendering problem, we wish to modulate a pressure
field in space. One approach would be to extend emitter phase modulation to
support arbitrary target regions with spatiotemporally varying pressure; another
could be to modulate high-velocity spatiotemporal control points to maximally
cover the target field. However, these approaches require the solution to a complex
optimization of high dimensionality (i.e., the activation pattern of each transducer,
or long-term point trajectories), running at high update rates.

Instead, we opt for an approach based on AM, which allows direct control of
pressure values, albeit at a small number of points. We leverage the observation
that, in reality, pressure is not concentrated at focal points, but exhibits a smooth
fall-off determined by the wavelength of the ultrasound signal (e.g., 8.6mm for the
40kHz of our test device). This fall-off can be well approximated by a Gaussian
function φ (Hoshi et al., 2010). Then, given a focal point at position xi with
nominal pressure pi, and a pressure fall-off with standard deviation σ, the pressure
at position x can be characterized as

p(x) = pi φ(‖x− xi‖) = pi e−
‖x−xi‖

2

2σ2 . (4.1)
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If focal points are distant enough, we can safely assume that the pressure at every
location depends only on the closest control point. Then, given a set of focal
points {xi}, each one of them defines the pressure field over its Voronoi region Ri
according to (4.1).

4.1.2 Target Pressure Field

Given a fluid simulation defined on a volume domain IR, we are interested only in
the pressure field on the surface of the user’s hand. Moreover, parts of the surface
of the hand may be occluded from the ultrasound device, hence it is pointless to
try to match their simulated pressure. Consequently, we define the target pressure
field p∗(x) on a target domain R = {x ∈ IR3} formed by the portion of the surface
of the virtual hand that is visible from the ultrasound device. Since the ultrasound
phased array is capable of producing pressure intensities, we clamp to zero the
negative target pressure values that occur when the hand moves away from the
flow.

In practice, we sample the target domain R with a set of points. In Section 4.2.2
we describe an efficient GPU-based algorithm to extract the target domain R and
the target pressure field p∗(x) from a fluid simulation.

4.1.3 Pressure Field Optimization

Based on all the ingredients described thus far, we define the rendering problem as
the search of N focal points and their pressure magnitudes, such that the difference
between rendered and target pressures, p(x)− p∗(x), is minimized over the target
domain R. Following the assumption that the focal points are distant and hence
the rendered pressure at each point is defined only by the closest focal point,
we partition the target domain into the Voronoi regions of the focal points, i.e.,
R =

⋃
i
Ri. Within each Voronoi region, the summed pressure difference depends

only on the pressure magnitude of the corresponding focal point.
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We propose an approximate solution to the pressure optimization problem that
works in two steps. First, we compute the positions of focal points following a
clustering approach. Second, we estimate the pressure magnitude of each focal
point to best match the target pressure within its Voronoi region.

Optimization of Focal Points

We formulate a clustering problem using target pressure values as weights. Formally,
this amounts to minimizing the following objective function:

f({xi}) =
∑
i

∑
x∈Ri

p∗(x) ‖x− xi‖2. (4.2)

This objective function corresponds to a weighted k-means clustering problem,
which can be solved efficiently using Lloyd’s algorithm (Lloyd, 2006). The algorithm
iterates steps where it computes the weighted centroids of Voronoi regions and
then updates those Voronoi regions, until convergence.

At every render frame, we initialize the iterative algorithm by placing the N focal
points at distant high-pressure locations. In practice, we search for the N points in
R with highest target pressure, such that they are separated by a distance larger
than σ.

Optimization of Pressure Magnitudes

Once the focal points and hence the Voronoi partition are fixed, we optimize the
pressure magnitude for each focal point independently. For each Voronoi region,
we formulate an objective function based on the summed pressure difference
between the target pressure p∗(x) and the actual pressure rendered by the device,
accounting for its fall-off as described in (4.1). This is a simple quadratic function
of the form

f(pi) =
∑

x∈Ri
(pi φ(‖x− xi‖)− p∗(x))2. (4.3)
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By the optimality condition ∇f = 0, we compute the pressure magnitude of each
focal point as

pi =
∑

x∈Ri p
∗(x)φ(‖x− xi‖)∑

x∈Ri φ(‖x− xi‖)2 . (4.4)

Once focal points and their pressure magnitudes are computed, we output them
to the driver of the ultrasound device. The driver then executes internally the
optimization of transducer waves (Long et al., 2014).

4.2 Fluid Simulation and Rendering Pipeline

In this section, we describe our fluid simulation solver, as well as the method for
extracting the pressure field on the hand’s surface.

4.2.1 Fluid Simulation

We apply our algorithm to the rendering of gaseous media such as smoke. As in
the work of Fedkiw et al., 2001, we assume that the simulated fluid is inviscid
and incompressible. Hence, its motion is described by the incompressible Euler
equations:

∇ · u = 0,
∂u
∂t

= −(u · ∇) u− 1
ρ
∇p+ f ,

(4.5)

where u corresponds to the velocity of the fluid, p is the pressure, ρ is the (constant)
density, and f accounts for external body forces such as gravity. We solve these
equations following the standard advection-projection scheme used in computer
graphics (Crane et al., 2007; Fedkiw et al., 2001; Stam, 1999; Yang et al., 2009).

First, we compute an intermediate velocity field u∗ by solving the self-advection
equation in (4.5) using a semi-Lagrangian advection scheme (Stam, 1999) and
integrating the external body forces f with explicit Euler. Next, to ensure mass
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conservation, the velocity field is projected onto a divergence-free state by solving
the pressure Poisson equation

∇2 · p = ρ

∆t∇ · u
∗, (4.6)

with Neumann boundary conditions
(
∂p
∂n = 0

)
at boundaries with normal n. Prior to

the projection to the divergence-free state, we explicitly enforce free-slip boundary
conditions (u · n = u∗ · n), i.e., we set the normal velocities at fluid boundaries
equal to those of the obstacles u∗.

Following the state of the art, we discretize the simulation domain IR using a
staggered grid (see Section 2.1.1), with fluid pressure defined at cell centers, and
fluid velocities defined component-wise at the centers of cell faces. We achieve
interactive simulation times by implementing the entirety of the fluid solver on the
GPU. As in the work of Crane et al., 2007, we enable massive parallelism by solving
the pressure Poisson equation using Jacobi relaxation.

Due to semi-Lagrangian advection, numerical dissipation might dampen interesting
features of the flow, such as vortices and eddies, which could be perceptually
relevant. We use vorticity confinement (Fedkiw et al., 2001; Steinhoff & Underhill,
1994) to inject additional kinetic energy at existing vortices, and thus alleviate the
effects of numerical dissipation.

For visualization purposes, we define immersed media, such as smoke, through
secondary density fields. We advect these density fields at every frame using the
same semi-Lagrangian advection method.

4.2.2 Adding the Hand and Extracting the Target Pressure
Field

In the fluid simulation, the user’s hand is treated as a moving obstacle with known
velocity. On every simulation step, we rasterize a signed-distance representation of
the hand, along with its corresponding velocity field. This representation enables
an efficient classification of interior/exterior points of the domain, as well as the
extraction of the surface normal, all under the same compact storage.
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As outlined in Section 4.1.2, we wish to extract the fluid pressure on the portion
of the boundary of the hand R visible from the ultrasound device. To do this, we
assume that the ultrasound device is placed on one of the walls of the domain IR.
Then, for every cell of this wall, we march inward into the domain until we hit the
first cell that is within one unit of the hand, and we store this cell’s position x and
pressure p∗(x).

Fig. 4.2.: Examples of fluid interaction showing target pressure values extracted from
the device’s view of the hand from below (lower left inset) compared with
reconstruction (lower right inset). Examples are (a) stirring the fluid, (b) hand
in a smoke jet, and (c) creating smoke plumes.
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4.3 Results

4.3.1 Summary of the Complete Rendering Pipeline

In our runtime pipeline, we set different refresh rates for the haptic rendering loop
and for the fluid simulation loop. We set the haptic refresh rate at 30Hz for smooth
rendering. At this rate, we sample the hand tracker, update the location of the hand
in the fluid simulation, extract the target pressure field, optimize the focal pressure
points and magnitudes, and output these commands to the haptic device driver.

We set the fluid simulation rate at the highest possible multiple of 30Hz; in our
implementation, 90Hz. In this way, we maximize the hand speed that can be
robustly handled by the simulation. With a domain IR of 0.5×0.5×0.5m discretized
by 100×100×100 cells, the CFL condition translates into a maximum hand velocity
of 0.45m/s. In practice, due to the numerical dissipation of the simulation, we
support even higher hand speed.

We run the fluid simulation and the haptic rendering on the same thread, with 3
fluid simulation steps per haptic update. We add a one-frame delay to the tracked
hand positions, and interpolate them at in-between fluid simulation steps.

We have executed our rendering algorithm on an AMD Ryzen 7 2700 8-core 3.20
GHz PC with 32 GB of RAM and a Nvidia GeForce GTX 1080 Ti GPU with 11 GB of
RAM. For ultrasound rendering, we have used an Ultrahaptics STRATOS Explore
(USX) device, running at 40kHz, which also features a Leap Motion device used for
hand pose tracking.

Fig. 4.2 shows screen-captures of example interactions. In all the captures, we
compare the target pressure fields (lower left insets) and the pressure fields re-
sulting from our optimization algorithm and reconstructed according to the model
described in Section 4.1.1 (lower right insets). The results have been produced
with N = 8 focal points and a pressure fall-off with σ = 16mm.
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(a) With emitter

σ = 8 mm 16 mm 24 mm 32 mm

N = 2 0.357 0.283 0.220 0.197
N = 4 0.334 0.242 0.193 0.186
N = 8 0.315 0.227 0.189 0.157

(b) Without emitter

σ = 8 mm 16 mm 24 mm 32 mm

N = 2 0.335 0.268 0.206 0.180
N = 4 0.313 0.228 0.180 0.170
N = 8 0.296 0.210 0.173 0.168

Tab. 4.1.: The RMSE between target and reconstructed pressure for different numbers
of points N and different radii σ of the pressure model (columns) for two
simulation conditions. Lower values indicate higher reconstruction quality. In
(a) the hand interacts with a smoke emitter; in (b) the hand stirs the smoke
and there is no emitter.

4.3.2 Algorithm Evaluation

According to the specification of the STRATOS device, it supports amplitude modu-
lation of up to 8 focal points and a frequency of 40kHz, which corresponds to a
focal diameter of 8.6mm. Based on these values, we have evaluated the rendering
quality of our algorithm with different numbers of focal points N , as well as dif-
ferent fall-off distances σ (which could be related to the focal radius). We used
the manufacturer-recommended setting of 200 Hz for amplitude modulation, and
typically settled on N = 4 focal points, since the power of individual points dimin-
ishes as more points are used. Using pre-recorded hand trajectories for the smoke
stirring scene and the smoke jet scene, we have computed the root mean square
error (RMSE) of the pressure field reconstruction under the different parameter
settings.

Table 4.1 summarizes the RMSE results. A clear trend is visible towards a better
reconstruction of the target values for an increasing number of points and larger
radii. However, in practice, reconstruction radii must be based on the area of the
hand affected by an individual focal point and thus selected based on the device
capabilities.
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Fig. 4.3 compares the reconstruction quality under the various parameter settings
for one particular target pressure field. The images show that as focal point
radius increases with respect to the Voronoi region size, the reconstructed values
flatten and thus the edges between boundaries decrease in realism with respect to
rendering. Thus, the focal point radii should be selected to give good results with
respect to their distribution as well as separation.

Fig. 4.3.: How pressure reconstruction changes with differing numbers of focal points
(top) and focal radii (bottom).

4.3.3 Timings

Timing information for the algorithm can be found in Table 4.2. Timing data
was collected and averaged over one minute of simulation while looping the
same trajectory used in the evaluation described in the previous subsection. Each
simulation step takes roughly 6.21ms, and each optimization step 8.5ms. Recall
that the simulation runs at 90Hz and the optimization and haptic rendering at
30Hz. The total computation time per haptic update is then 27.13ms.
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(a) Timings per simulation step

Step Time

Obstacles rasterization 0.44 ms
Advection 0.42 ms
Pressure 3.58 ms
Boundaries and vorticity 1.77 ms

(b) Timings per optimization step

Step Time

Pressure extraction 1.50 ms
Transferring to host 2.65 ms
Optimization 4.35 ms

Tab. 4.2.: Timing data of the full pipeline, including both (a) the fluid simulation and (b)
the optimization.

4.4 Discussion and Future Work

In this chapter we introduce the ability to interact with fluid simulations using
ultrasound haptics. To achieve this, we have designed a novel method to display
a pressure field on the surface of the hand. We propose to find an optimal set of
focal points, minimizing the difference between the reconstructed pressure field
and the target pressure obtained from the fluid simulation.

Choices of fall-off radius and number of focal points were explored with respect
to the expected reconstruction accuracy. However, to fully evaluate the display
method, a perceptual evaluation is required, not only in these variables, but
also with regards to spatiotemporal aspects that may lead to experience these
moving focal points as a representation of a dynamic field. We expect research in
this direction to lead to formulations that bridge the amplitude modulation and
spatiotemporal modulation control methods for ultrasound haptics.
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Ultrasound Rendering of
Fluids through
Spatiotemporal Modulation

5

In Chapter 4 we address the rendering of interactions with virtual environments
using ultrasound haptics, putting an special emphasis on fluid interaction. To this
end, we extracted a target pressure field from the interaction of a virtual hand
with a dynamic fluid simulation, and then found the optimal amplitude modulation
(AM) commands that induce a best-matching pressure field on the user. However,
AM suffers some limitations; probably the most evident that the intensity of focal
points modulates a pressure wave that induces a perceivable vibration on skin
(typically at 200 Hz).

Alternatively to AM, spatiotemporal modulation (STM) promises the ability to
cover larger skin areas with higher perceived intensity, by leveraging constructive
interference of focal point paths with the skin waves they induce. To date, all
previous work commands STM with focal point paths of constant intensity; no
previous method computes STM paths of varying intensity to best match dynamic
interactions. Not surprisingly, STM poses a more complex challenge than AM.
While AM rendering can be regarded as a quasi-static problem, STM requires the
solution to a spatial and temporal problem.

In this chapter, we study the problem of rendering interactions with virtual envi-
ronments targeting the STM command metaphor. For this, we propose path routing
optimization for STM (PRO-STM), the first method that commands ultrasound STM
to render the force distribution resulting from a dynamic virtual interaction. As
we discuss in Section 5.1, a key aspect of our method is to pose STM rendering as
a quasi-static problem. Thanks to careful approximations, we can eliminate the
temporal variable on each dynamic rendering update. As a result, given a target
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pressure field, we pose STM rendering as the computation of focal point paths that
produce the best-matching quasi-static pressure field.

Then, given a target pressure field, we propose an optimization algorithm to
compute focal point paths, as described in Section 5.2. Our algorithm works at
two scales. First, on a coarse scale, it initializes paths over the target domain to
optimize coverage weighted by pressure intensity. Then, on a finer scale, it refines
the paths to maximize the similarity to the target pressure.

We have applied PRO-STM to the interaction with gaseous fluid media, as shown
in Fig. 5.1. In such interactions, haptic perception is dictated by a spatially and
temporally varying pressure field on skin, which is used as target for our algorithm.
We have compared the reconstruction quality of PRO-STM vs. our previous AM ren-
dering method, observing that PRO-STM succeeds to provide larger and smoother
coverage than the AM-based method. In particular, AM produces ambiguous results
when rendering interaction with one wide plume or with multiple thin plumes,
while STM does not suffer such ambiguity. We have conducted an experiment that
confirms this observation.

5.1 Principles of Spatiotemporal Modulation

To design an ultrasound rendering algorithm based on STM, it is important to
understand the properties that best balance the capabilities of the ultrasound device
with the quality and richness of tactile stimuli. We pay attention to the speed and
frequency at which focal points traverse skin, and we extract desiderata for our
algorithm. In addition, we devise a model of the radiation pressure produced
by focal point paths, which helps design our algorithm. Specific values of the
parameters and constraints of the algorithm depend on the choice of ultrasound
device, an Ultrahaptics STRATOS device in our case.
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Fig. 5.1.: Example scene rendered using our novel PRO-STM method. From left to right:
Physical setup with the ultrasound device and a view of an interactive fluid
simulation; screen-capture of the fluid simulation, showing the virtual represen-
tation of the user’s hand interacting with colored smoke plumes; pressure field
(a) produced by the smoke on the surface of the hand, which sets the target for
our algorithm; reconstructed pressure field (b) produced by STM rendering of
dynamically optimized focal point paths.

5.1.1 Rendering Parameters and Constraints

In STM, a focal point traverses a path in space. We formally describe the path as
a time-dependent position: P = x(t) ∈ IR3. As noted in Section 2.2.3, Frier et al.,
2018 concluded that the perceived intensity of a focal point path is maximized
under constructive interference between the motion of the focal point and the
propagation of skin waves. This happens for focal point speeds between 5 and
8 m/s; therefore, we select a reference speed v = 7 m/s for our rendering algorithm.
Furthermore, to ensure constructive interference on the complete path, we design
closed paths, i.e., P is a closed 3D curve.

Frier et al. assumed that the length of the path is given; therefore, the frequency at
which the path is repeated cannot be independently controlled, and depends on
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the traversal speed and the length of the path. In our preliminary experiments, we
observed that this is acceptable up to a maximum path length. Beyond that length,
the frequency at which the path is repeated is too low, and the stimulus is no longer
perceived as continuous. To determine the minimum acceptable frequency, i.e., the
maximum acceptable path length, we informally experimented rendering circles of
different radii at the reference traversal speed of 7 m/s. We found that a minimum
frequency of 50 Hz, i.e., a maximum path length L = 140 mm is a safe bound to
ensure that the stimulus is perceived as continuous.

Our test device allows STM of multiple focal points simultaneously. Each focal point
can traverse a different path, with all focal points traveling at the reference speed,
and all paths satisfying the maximum length constraint. From our preliminary
experiments, we have concluded to limit the number of simultaneous focal points,
i.e., the number of simultaneous paths, to four. More focal points may reach larger
coverage, but at the price of notable degradation of perceived intensity.

5.1.2 Quasi-Static Pressure Field

In previous works, STM was used to render 3D curves, hence the intensity of the
radiation pressure of the moving focal point was kept constant along such curves.
In this work, we render a temporally and spatially varying pressure field, hence
the intensity of the radiation pressure along the path should adapt locally to the
intensity of the pressure field. Based on this consideration, we characterize a path
with a position-dependent pressure intensity p(x).

As a focal point cycles multiple times through the same position xi, the rendered
pressure intensity p(xi) = pi is the same on all cycles. If the path is repeated
frequently enough (i.e., at more than 50 Hz), the rendered radiation pressure
produces a persistent tactile perception. We consider that this is equivalent to
applying a time-invariant pressure at each position along the path, with its effective
magnitude a fraction of the rendered pressure. Thanks to this assumption, during
a time window we can consider that the effective pressure is a spatially varying but
temporally invariant field, i.e., a quasi-static pressure field.
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Determining accurately the effective pressure of STM rendering is a complex
subject that requires further research. It is not a simple time-average of the
rendered pressure. In our work, we follow a perceptual heuristic to approximate
its magnitude. We render the same stimuli using AM and STM, and we ask subjects
to tune the gain γ of STM until the peak perceptual intensity is similar. In practice,
we have used a gain γ = 1.4.

Focal points exhibit a smooth fall-off determined by the wavelength of the ultra-
sound signal (e.g., 8.6 mm for the 40 kHz of our test device). As shown by Hoshi
et al., 2010, this fall-off can be approximated well by a Gaussian function φ. Based
on this finding, together with the heuristic gain γ, we approximate the effective
quasi-static pressure field produced by a focal point path as

p(x) = 1
γ
pi φ(‖x− xi‖) = 1

γ
pi e−

‖x−xi‖
2

2σ2 , (5.1)

where xi is the closest position to x in the path. We set the standard deviation σ of
the Gaussian fall-off to the same value as the wavelength of the ultrasound signal
(i.e., 8.6 mm)

The quasi-static pressure field assumption simplifies the design of our rendering
algorithm. Given a target pressure field obtained from a fluid simulation, we
pose each rendering step as the search for the focal point paths whose quasi-
static pressure field best reconstructs the target field. This search must fulfill two
constraints to ensure that the quasi-static pressure field assumption is valid, namely
that each focal point travels at the reference speed v and the length of each path is
not longer than the maximum length L. In the next section, we describe our path
optimization algorithm.

5.2 Path Routing Optimization

Given a target pressure field, we seek focal point paths that produce a best-matching
quasi-static pressure field. We solve this problem in two steps, at two different
resolutions. Both steps search for paths that maximize coverage and integrated
pressure intensity subject to the path length constraint, but the first coarse step

5.2 Path Routing Optimization 85



Fig. 5.2.: Steps of our PRO-STM algorithm: (a) input target pressure field, (b) clustering,
(c) initial path, (d) split into multiple paths to satisfy length constraints, (e) re-
finement of the paths to maximize pressure intensity, (f) resulting reconstructed
pressure field.

performs a global search, while the second fine step performs a local search. Before
describing these two steps in detail, we describe how we obtain the target pressure
field from a fluid simulation. And we conclude the section with implementation
details to render the paths on our test device.

5.2.1 Target Pressure Field

We adopt the approach described in Section 4.2.1 to compute an interactive fluid
simulation and extract the target pressure field. We track the user’s hand and
model it as a moving obstacle in a 3D simulation of a gaseous medium. We model
fluid dynamics using incompressible Euler equations discretized on a 3D Eulerian
grid, with semi-Lagrangian advection and massively parallel Jacobi relaxation
for the pressure solve. The fluid simulation is executed on a GPU for maximum
performance. Please refer to Section 4.2.1 for full details.

To define the target pressure field, we voxelize the hand, and select the voxel
positions that are visible from the side of the domain that corresponds to the
location of the ultrasound device. To simplify the path optimization problem, we
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fit a plane to the voxel positions and we project them onto the plane, making
path optimization a 2D problem. Formally, the target pressure field is described
by a set of 2D positions and their corresponding target pressure values, T =
{
(
xi ∈ IR2, p∗(xi)

)
}.

To ensure high computational performance, the initialization of the paths uses only
a representative subset of the target pressure points T . We apply weighted k-means
clustering to T , to produce a downsampled target pressure field with pressure
points D. In Fig. 5.2-a we show T , the target pressure points on the user’s hand
extracted from a fluid simulation, and in Fig. 5.2-b we show D, the downsampled
pressure points.

5.2.2 Path Initialization

Given the pressure points D, we seek a set of closed paths that visit all the points,
subject to the maximum path length L. The optimal solution to this problem may
require an arbitrarily large number of paths; however, as noted in Section 5.1.1,
we concluded to limit the number of paths to four in practice. Consequently, the
resulting paths may fail to visit all the pressure sample points, and an optimal set
must be selected.

We solve this problem iteratively. We first compute the optimal path that visits
all the points. If the path is too long, we split the set of points into two subsets
and we compute separate optimal paths. We split the subsets of points recursively
until all paths satisfy the maximum length constraint. Fig. 5.2-c shows the optimal
path for the full set of pressure sample points, while Fig. 5.2-d shows the optimal
paths after splitting the points to satisfy the maximum path length constraint. If
the number of resulting paths is larger than four (as in the figure), we retain the
four paths with highest integrated pressure, and we pass them to the refinement
step described in the next section. But first, we describe in detail the operations to
compute an optimal path for a set of points and to split a set of points.

Given a set of points, finding the shortest path that visits all the points corre-
sponds to the traveling salesman problem. We solve this problem using the 2-opt
algorithm (Croes, 1958), which admits closed paths. The computational cost of
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2-opt sets an upper bound on the size of D. In our implementation, we set it to a
maximum of 50 points. Thus we run the weighted k-means clustering step above
with 50 or fewer clusters.

To split a set of points, we find the direction of maximum spread, we bound
the points along this direction, and we place a splitting plane orthogonal to the
direction at the midpoint of the two bounds. To find the direction of maximum
spread, we compute the covariance matrix of the points, weighted by their pressure
value. The direction of maximum spread corresponds to the eigenvector with
highest eigenvalue.

5.2.3 Path Refinement

After initialization, the paths pass through pressure clusters and fulfill the maximum
length constraint. However, due to their coarse sampling, they are not optimally
aligned with pressure peaks and ridges. We execute path refinement at a higher
resolution, hence we start by upsampling each path to N points. N = 20 in our
implementation, which sets points 7 mm apart from each other, i.e., the distance
traveled by a focal point in 1 ms.

During refinement, the goal is to move path samples locally toward locations with
higher pressure, while ensuring that paths preserve the following properties: (i)
they satisfy the maximum length constraint; (ii) to reach maximum coverage, they
do not (self-)intersect; and (iii) they do not bend at sharp angles, as the design
decisions of our algorithm stem from perceptual observations on smooth paths,
and paths with sharp corners reach smaller coverage. To implement refinement,
we formulate the goal and the properties as cost terms of an objective function,
and we execute a minimization algorithm.

Given paths with samples {xi ∈ IR2}, we formulate a pressure intensity cost term
as:

cp = −
∑
i

p∗(xi). (5.2)

This term is minimized as the samples move to locations with higher pressure.

88 Chapter 5 Ultrasound Rendering of Fluids through Spatiotemporal Modula-
tion



With a target path length L, and N samples per path, the target length is obtained
if the length of each path segment is L/N . Then, we formulate a length cost term
as:

cl =
∑
i

(‖xi+1 − xi‖ − L/N)2, (5.3)

where xi and xi+1 are two consecutive path samples.

If two paths or two portions of a path get closer than the fall-off distance of focal
points, σ, they stimulate overlapping skin areas. The result can be considered
inefficient, as the covered skin area is larger if the paths move away. We introduce
a (self-)intersection cost term that prevents path samples from getting too close:

ci =
∑
i,j

max(σ − ‖xj − xi‖, 0)2, (5.4)

where xi and xj are two non-consecutive path samples.

Finally, to favor low-curvature paths, we introduce a bending cost term:

cb =
∑
i

arctan2 (xi+1 − xi)× (xi − xi−1)
(xi+1 − xi)T (xi − xi−1) , (5.5)

where xi−1, xi and xi+1 are three consecutive path samples.

We optimize the paths by iterating steps of gradient descent of the four cost terms.
For the pressure intensity term, we set a 2D grid with the target pressure values T ,
and we use bicubic interpolation to evaluate the pressure at subgrid resolution and
to compute robust gradients. Furthermore, we apply a line search to ensure that
the step along the gradient reduces the cost. Fig. 5.2-e shows example paths after
refinement.

To account for the effective magnitude of the pressure field, we must incorporate
the heuristic gain γ discussed in Section 5.1.2. We set the rendered pressure of a
point on a path as pi = γ p∗(xi), based on the target pressure field p∗. Fig. 5.2-f
shows the reconstructed pressure field according to the quasi-static pressure model
of Section 5.1.2.
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5.2.4 STM Rendering

Once 2D paths are fully computed, we lift them back to 3D for rendering on the
device. We achieve this by undoing the projection of the hand voxels discussed in
Section 5.2.1.

Each path is 140 mm long and is traversed in 20 ms at 7 m/s. The STM rendering
API of the Ultrahaptics STRATOS Explore (USX) device updates every 1 ms a burst
of 40 consecutive focal point positions. Therefore, we linearly upsample each path
to 800 points spaced 0.175 mm, and feed them in groups of 40 points to the API.

5.3 Experiments and Results

Here we describe some details of implementation and characteristics of its run-time
performance. Following this, we describe a user study we performed to compare
PRO-STM to the AM method.

5.3.1 Implementation Details

All experiments were performed, and timing data was collected, on a Lenovo laptop
featuring an NVidia GeForce GTX 1070 GPU and Intel Core i7-6820HK CPU at 2.7
GHz, with 24 GB of RAM and 8 GB of video RAM. Software was written in C++
and CUDA for GPU kernels.

We have used an Ultrahaptics STRATOS Explore (USX) device for ultrasound
rendering. The USX employs an array of 16× 16 transducers running at 40 KHz,
thus producing focal points of 8.6mm diameter. The device supports a maximum
of 8 simultaneous focal points, but we have used 4 in our experiments. Hand pose
tracking was achieved through the Leap Motion tracker device bundled with the
USX.
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The fluid simulation ran at 50 Hz on the GPU while PRO-STM was executed in
parallel on the CPU at 25 Hz. At this rendering rate, each path was traversed twice
per update.

5.3.2 Performance

We evaluated computational performance of PRO-STM on 500 frames recorded
during interaction with two scenarios, namely 1 and 4 plumes of smoke, as these
have qualitatively different distributions of pressure fields. Timings were broken
down by segment of the algorithm, and are presented in Table 5.1. These data
show that the algorithm runs at interactive rates (typically above 40 Hz in this
implementation) without problems on commodity hardware, and may do so along-
side a computationally heavy load driving a time-varying target field. In practice
we run PRO-STM at 25 Hz in order to attain integer division of the path traversal
frequency of 50 Hz, as discussed above.

We have also compared performance with our previous AM rendering method
( Chapter 4). AM shows superior performance, with update rates of roughly 250 Hz
on both test scenarios.

1-plume 4-plumes
Step Mean (µs) StdDev Mean (µs) StdDev

Init 285 106 142 59
K-means 1548 386 948 338
Initial path (2-Opt) 2550 646 1224 554
Splitting (recur. 2-Opt) 744 235 324 179
Resampling 12 4 10 4
Refinement 17896 1664 11120 3344

Total: 24303 2256 14640 4281

Tab. 5.1.: Timing for each step of PRO-STM on two scenarios.
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5.3.3 Qualitative Comparisons

Currently we restrict the comparison between the current work and the previous
AM method (Chapter 4) to a qualitative one because the respective reconstructed
fields are not numerically comparable. This is because the AM field reconstruction
is very sparse compared to the STM field reconstruction, but it is not clear from
current knowledge of these haptic display methods how to properly consider the
reconstructed fields from a perceptual point of view. In particular, the relation
between the rendered pressure intensity and the perceived intensity is different
for these two methods, and this variable strongly affects computed reconstruction
error. The reconstruction model does not describe well the effects of parasitic
tactile artifacts either, such as AM’s constant vibration.

However, to demonstrate qualitatively the difference in coverage and detail repro-
duction, in Fig. 5.3 we visualize reconstructions of rendered pressure fields with
STM and AM. For STM, we use the model of quasi-static pressure field of Eq. (5.1),
which includes the heuristic gain between rendered and effective pressure. Both
for STM and AM, we use σ = 8.6 mm, corresponding to the focal point fall-off.
Since our model of quasi-static pressure reconstruction is based on heuristics, it is
not suited for a quantitative (e.g., RMSE) comparison of STM and AM.

The renderings are taken from the scenarios used in the comparison study described
later in this section. It is apparent that the field expected from STM does a better job
at differentiating between these two conditions, while AM suffers from ambiguity,
making it difficult to tell the difference between one large smooth shape and four
smaller ones. In the following section, we describe a study intended to investigate
this ambiguity and whether PRO-STM might overcome it.

5.3.4 Perceptual Study

To evaluate a difference in rendering between the proposed algorithm and the AM
method for fluid rendering described in Chapter 4, we explored whether PRO-STM
could provide more details to the user in a situation where the AM approach leads
to ambiguity in the display.
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Fig. 5.3.: Experimental scenarios and representative examples of target and reconstructed
fields using the proposed method (PRO-STM) and our previous AM method.

Specifically, we noticed that when a large, smooth pressure field is present, such
as in the case of a single, large plume of smoke rising towards the hand, the AM
approach places four control points in relatively stable positions. Correspondingly,
it can be difficult to discriminate this display from a situation of four individual
pressure concentrations, as in the case of four smaller columns of smoke. These
situations are depicted in Fig. 5.3.

In the study, we asked participants to discriminate between 1-plume and 4-plume
scenarios. The study featured 8 participants evaluated with AM, and 8 separate
participants evaluated with PRO-STM. Initial testing revealed some confounding
effects of mixing the two methods in the same experiment, as participants would
use detectable differences between the two methods as erroneous cues to attempt
to distinguish the two scenarios. Therefore, we found it most reliable to examine
average performance across participant groups each evaluating different methods.
No participants from earlier testing participated in the final study.

Participants were seated in front of the STRATOS device and a laptop running the
fluid simulation. They were asked to hold their hand out flat above the device and
feel the column or columns of smoke. First, an initial training period of two minutes
was given where they were allowed to explore freely the two scenarios while seeing
the simulation’s 3D visual representation. Next, each participant performed 16
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Fig. 5.4.: Proportions of correct responses for the two methods overall, and by scenario.
Asterisks represent significant differences, determined by a pooled probability
z-test across the cumulative samples. Error bars indicate standard error of
participant means, with individual proportions marked by an ‘x’.

trials, 8 with one column and 8 with four columns, in random order. On each trial,
the participant experienced the scenario while looking at a static image along with
a textual question, chosen randomly, “Is there one plume of smoke?” or “Are there
four plumes of smoke?” The experimenter also repeated this text out loud for each
trial, and was responsible for entering the information. The participant responded
with “true” or “false” by voice. Participants did not have an explicit time limit to
experience the scenarios and respond, but they took on average 5 seconds per
trial.

Demographics: participants were between the ages of 20 and 50, with two partici-
pants above 40. Seven participants were female, and 9 were male. The majority of
participants interacted with the experiment in their native language, Spanish. Two
participants performed the experiment in English. One participant was left-handed
and performed the experiment with his dominant hand. No participants reported
health difficulties, abnormal skin conditions, or sensitivity issues.

A significant difference was found between AM and STM, with higher proportion
of correct responses using STM, see Fig. 5.4, indicating that PRO-STM delivers
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more detailed information about the target in both scenarios. No effect of the
scenario was found, and since participants tried only one method each, no order
of presentation effect is possible. Additionally no significant difference was found
between genders or due to question correctness. The same experimenter performed
all trials, which took place in an office environment.

Notable in the figure is that some participants could not perform the task, whereas
others performed it exceptionally well. This would suggest a possible bimodal
distribution, and we could exclude poorly performing individuals, but we elected
not to as it did not affect the significance of the cumulative result. However,
we noted that during informal testing and in demo conditions some people had
difficulty detecting or discriminating using either AM or STM or both; this appears
to be a limitation of ultrasound haptics for which we do not have enough data to
correlate with explanatory variables such as skin type, hydration, or sensitivity, and
remains an open question for the field.

5.4 Discussion and Future Work

We have described a new method, PRO-STM, for dynamically determining the
paths of STM ultrasound focal points for an arbitrary target pressure field, and
demonstrated improved coverage and smoothness over previous work based on
AM ultrasound.

We account for current knowledge of STM to design algorithm features such as
optimal traversal speed, maximum path length, or minimum inter-path distance.
However, several perceptual factors related to STM remain unknown, and they can
spur further algorithm improvements.

(i) We currently treat path routing as a 2D problem, whose solution is subsequently
un-projected to a 3D path, and we ignore the change of path length due to this
un-projection. The problem admits a more accurate formulation, accounting for the
surface of the hand as a 2D manifold embedded in 3D; however, the effect of focal
point velocity in 3D is an unknown aspect of STM perception. (ii) We introduce a
bending cost term in the optimization, as we know that path corners are difficult to
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distinguish; however, we do not know how to best weigh this cost, as the sensitivity
of STM perception to changes in direction is unknown. (iii) We optimize paths for
each rendering update independently, without special treatment to path transitions.
This approach induces transients with unknown effects, as moving focal point paths
have not been studied yet. (iv) We map the rendered pressure to the effective
perceived pressure using a heuristic gain. We use a constant gain, but in reality
the mapping depends on the spatiotemporal characteristics of each path and the
specific effect produced on the subject’s skin; effective skin deformation might
be a more accurate metric to design a mapping. (v) The implementation of the
algorithm relies on the choices of optimal traversal speed of 7 m/s and minimal
frequency of 50 Hz. While these values are derived from perceptual studies, they
can be refined through further experiments focused on the algorithm.

Although recent works are beginning to address perception of STM and its relation
to wave propagation in the skin (Reardon et al., 2019), we lack knowledge of the
effect on perceived intensity of fundamental STM parameters such as rendered
intensity, traversal speed, or path frequency. This knowledge can improve our
quasi-static pressure reconstruction model, and allow a more considered path
optimization. Overall, as our method depends on hand tracking, it is in a good
position to take into account new knowledge about hand skin mechanics and its
connection to ultrasound-based stimulation.
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Natural Interaction with
Virtual Clay

6

One of the ambitions of virtual reality (VR) is to let people create 3D forms without
the constraints of real-world objects, materials and procedures (Bouzbib et al.,
2021). Today, VR provides commodity immersive display and hand tracking,
two of the major requirements for effective VR-based 3D modeling applications.
However, simulation models and interaction techniques have not reached the
maturity necessary for virtually modeling complex materials such as clay in a
natural way.

Virtual modeling of clay-like materials should include the following features: real-
istic behavior of the material, natural hands-on interaction, and tactile feedback.
In this chapter, we present a simulation and interaction model that includes all
these features, and therefore enables natural and tangible VR-based modeling of
clay. We rely on an existing natural hand simulation model (Verschoor et al., 2018)
to enable bidirectional coupling between the user and the virtual clay simulation.
We use hand tracking to command the simulated virtual hand, we simulate the
physical interaction between this hand and the clay-like material, and we feed
the interaction forces back to the hand simulation. We also use these forces to
command a tactile rendering algorithm. The two major technical contributions
in the work presented in this chapter, which enable the overall system, are the
simulation model of clay and the tactile rendering algorithm.

Clay is a complex material that combines properties of solids (permanent shape)
with properties of fluids (plastic flow). To date, no interactive simulation method
represents well this complex behavior. We present a particle-based model, as an
extension to the one presented in Chapter 3, which captures well and efficiently the
main features of clay-like materials. Our model, described in Section 6.1, includes
novel formulations of constraints for viscosity, elastoplasticity, and friction, which
together produce clay-like behavior.
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Fig. 6.1.: Arts & crafts in the virtual classroom. We introduce a novel model of clay
that allows interactive and highly realistic deformations, merging, and splitting.
We also introduce an ultrasound rendering algorithm that enables a tangible
interactive experience.

Clay is modeled with bare hands, and contact may occur both at finger pads as well
as on large areas of the palm. Ultrasound rendering, despite its power limitations,
offers the ability to stimulate the full hand in free air, with a good trade-off between
coverage and resolution (Otaduy et al., 2016). In Section 6.2, we present a
rendering algorithm that takes as input the contact forces between the virtual hand
model and the clay material, and outputs focal pressure point commands for an
ultrasound array. Our algorithm extends the one presented Chapter 4, and solves
an optimization formulation that can accommodate perceptual weight maps.

We demonstrate the effectiveness of our simulation model and rendering algorithm
on several examples of creative experiences with complex and rich clay material,
such as the one shown in Fig. 6.1.
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Fig. 6.2.: Ablation study of the novel constraints in our PBF clay model. We drop a
block of clay on an incline, and we show its deformation during the impact
(top) and one second later (bottom). From left to right: our full clay model
(green); without viscosity constraints, the material flows fast and fractures (red);
without elastoplasticity constraints, the material drifts (blue); and without
friction constraints the block slides (magenta).

6.1 Viscoplastic Model of Clay

Particle-based Lagrangian representations offer the best compromise for the simu-
lation of complex viscoplastic materials such as clay. They support robust strain
metrics for elasticity through particle bonds, and they also support efficient plastic
flow by dynamically (de)activating such bonds. Following the method presented
in Chapter 3, we build on the PBF simulation method (Macklin & Müller, 2013).
PBF formulates particle dynamics as a constrained minimization problem, and
constraints are resolved using a relaxation algorithm. In PBF, solid and fluid con-
straints can be seamlessly handled, and the main difference is whether they use
(semi-)permanent or temporary particle bonds. We start this section with a recap
of the PBF algorithm for the simulation of incompressible fluids, which sets the
baseline for our method.

To apply the PBF algorithm to highly viscoplastic materials such as clay, we propose
novel constraint formulations that capture the major effects of the material. First,
we model viscosity by expressing a constraint on strain rate. To this end, we must
turn the velocity-based formulation into position-based constraints. Second, we
model elastoplasticity using semi-permanent distance constraints. We achieve plas-
ticity by integrating a hysteresis threshold on the (de)activation of the constraints.
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And third, we model frictional contact using anchor constraints. All in all, these
constraint formulations produce the characteristic clay behavior of extreme vis-
coplasticity. Fig. 6.2 compares the effect of each of the constraints on the behavior
of clay.

6.1.1 PBF Simulation Model

As discussed in Section 2.1.2, PBF discretizes the material by a set of particles, and
the state of each particle is defined by its position xi and velocity vi. Particles also
have mass mi. PBF uses a smoothed particle hydrodynamics (SPH) Monaghan,
1992 approach to define variables in the continuum, and hence the value of a
variable a at an arbitrary position xi is evaluated as:

A(xi) =
∑
j

mj

ρj
AjWij , (6.1)

with Wij = W (xij) = W (xi − xj) the evaluation at xi of a smoothing kernel
centered at xj with support radius h, Aj the value of the variable for the jth

particle, and ρj the density field evaluated at xj .

As noted in Section 2.1.2, in PBF the mechanical behavior of the material is
defined and solved using constraints. In the following subsections we detail the
formulation of the different types of constraints of our viscoplastic material model.
First, let us define some general notation, where Ck represents each one of k types
of constraints, and Jk,i = ∂Ck

∂xi is its Jacobian with respect to the position of a
particle.

Constraints are solved one at a time, projecting the particle positions such that
linearized constraints are fulfilled. The particle projection for a constraint Ck is
computed as Bender et al., 2014:

∆xi = −
1
mi

JTk,iCk∑
j

1
mj
‖Jk,j‖2

. (6.2)

The overall PBF algorithm proceeds as outlined in Algorithm 3. First, it computes
unconstrained motion given by inertial and gravity forces. Then, it iterates over the
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ALGORITHM 3: PBF step

Input: Previous particle states {x0
i }, {v0

i }.
Output: Updated particle states {xi}, {vi}.

/* Compute unconstrained positions */
foreach particle i do

xi = x0
i + ∆tu0

i + ∆t2

mi
fi(x0

i )
end

/* Relaxation iterations */
foreach iteration do

/* Loop over constraint types */
foreach constraint type k do

/* Solve constraints in parallel */
foreach constraint j do

project {xi} such that Ck,j({xi}) = 0
end

end
end

/* Update velocities */
foreach particle i do

vi = xi−x0
i

∆t
end

constraints, projecting the particles to the closest valid configuration. As in the work
presented in Chapter 3, we maximize the efficiency of a GPU implementation by
iterating over constraint types in Gauss-Seidel fashion, but executing all constraints
of the same type in fully parallel Jacobi fashion. To conclude, the PBF algorithm
computes particle velocities using finite differences.

We characterize clay as an incompressible extremely viscoplastic material. To model
incompressibility, we use a constraint on the particle density, as done regularly in
PBF methods (Bodin et al., 2012; Macklin & Müller, 2013). Next, we discuss the
novel types of constraints used in our model.

6.1.2 Viscosity

Viscosity damps the differences in local velocities within a medium, and these
velocity differences can be best characterized by the symmetric part of the strain
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rate tensor (Bender & Koschier, 2017). Then, we design a viscosity constraint as:

Cviscosity(vi) = ∇vi + (∇vi)T = 0. (6.3)

Our constraint can be regarded as a simplified version of the viscoelasticity con-
straint presented in Chapter 3. However, we care only about viscosity, not vis-
coelasticity, and we model the elastic behavior of the material through an explicit
elastoplastic constraint discussed later.

The velocity gradient in (6.3) is obtained by differentiating the SPH kernel (6.1) to
obtain:

∇vi =
∑
j

mj

ρj
(vj − vi) ∇W T

ij . (6.4)

To avoid damping rotational motion, we define particle velocities using a coro-
tational finite-difference approximation as vi = xi−xri

∆t , where xri represents the
rotational part of the displacement.

In Fig. 6.2 we compare the simulation with (green) and without (red) the viscosity
constraint. With viscosity, the material becomes rigid soon after an impact, and
without viscosity it flows fast and quickly fractures.

6.1.3 Elastoplasticity

Viscosity alone cannot represent the behavior of materials such as clay. The
material exhibits a resistance to deviate from its stable configuration (i.e., elasticity),
although it soon flows into a different configuration. We model this behavior using
an elastoplastic model at low velocities, combined with the previous viscous model
at larger velocities.

In PBF, elasticity can be handled using distance constraints between pairs of
particles xi and xj . The constraint is formulated as:

Celasticity(xi,xj) = ‖xi − xj‖ − dij = 0, (6.5)

where dij is the rest length of the constraint.
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To model plastic flow, we (de)activate elasticity constraints based on the relative
velocity of particle pairs projected to their connecting segment. If the projected
relative velocity of a particle pair falls below a threshold, we activate an elasticity
constraint. On the other hand, if the relative velocity grows over a threshold, we
deactivate the elasticity constraint to allow the particles to flow. We achieve stable
behavior through the use of distinct (de)activation thresholds (i.e., hysteresis).

In Fig. 6.2 we compare the simulation with (green) and without (purple) the
elastoplasticity constraint. Without elastoplaticity the material drifts slowly, and
with elastoplasticity it soon stops deforming.

6.1.4 Contact and Friction

We model frictional contact with arbitrary objects, such as the dynamically de-
forming hand, by rasterizing ghost particles on these objects, and then setting
particle-based constraints. We use two types of constraints, to model impenetrabil-
ity and friction, as we detail next.

For each solid object, we rasterize ghost particles in its rest configuration, and
transform these particles according to the motion of the object. For the hand, we
mesh its interior with tetrahedra, and transform the particles using the barycentric
coordinates of the enclosing tetrahedra.

We execute collision detection at the beginning of each time step. For each ghost
particle that falls within a radius R of a clay particle, we set an impenetrability
constraint with the same formulation of the distance constraint (6.5), with dij = R.
As done by Macklin et al., 2014, we ensure that impenetrability only repels and
does not attract particles, by designing one-sided contact normals.

To handle Coulomb friction, we use a sliding-anchor model, inspired by spring-
based frictional contact models (Yamane & Nakamura, 2006), but adapted to the
constraint-based PBF simulation algorithm. Every time a particle xi suffers a new
contact, we set an anchor ai at an offset R from the location of the corresponding
ghost particle. Then, we add a zero-distance constraint between xi and ai. How-
ever, when applying the particle projection (6.2) due to the friction constraint, we
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Fig. 6.3.: Our tactile rendering algorithm proceeds according to these steps, from left
to right: (i) The particle-based simulation computes forces and deformation
on clay particles due to the interaction with ghost particles on the hand (Sec-
tion 6.1). (ii) We compute a pressure field on the ghost particles on the hand
(Section 6.2.1). (iii) We compute the location and pressure of focal points
such that the reconstructed pressure field is optimal, and these focal points
are commanded to an ultrasound array for amplitude-modulation rendering
(Section 6.2.2).

limit it based on the friction coefficient µ and the particle projection due to the im-
penetrability constraint, i.e., ‖∆xfriction,i‖ ≤ µ ‖∆ximpenetrability,i‖. Furthermore,
at the end of each step we slide each anchor, such that the distance to the colliding
particle is given by the total particle projection of the friction constraint.

In Fig. 6.2 we compare the simulation with (green) and without (magenta) the
friction constraint. Without friction the material slides down the incline.

6.2 Ultrasound Haptic Rendering

Based on the interactive simulation of clay presented in the previous section, in
this section we describe how we provide feedback to the user, in the form of
ultrasound-based tactile rendering. We divide this task in two steps, outlined in
Fig. 6.3. First, we obtain a target pressure field from the contact forces between the
hand model and the clay material. Second, we design an amplitude-modulation
rendering algorithm to compute focal pressure points that are commanded to the
ultrasound device. Next, we describe these two steps in detail.
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6.2.1 Interaction Pressure Field

Similar to previous works on ultrasound rendering of fluids, we extract a pressure
field from the interaction between the simulated hand and the clay material.
However, since our PBF simulation model differs from the Eulerian model employed
in Chapters 4 and 5 or the SPH model of Jang and Park, 2020, we require a different
method to compute the pressure field on the simulated hand.

As described in Section 6.1.4, we set ghost particles on the hand to handle contact
with the clay material. We use these same ghost particles to recover the pressure
field on the hand. On every projection step due to an impenetrability contact
constraint, we compute the contact force on the corresponding ghost particle. The
force ∆fi of a projection step (6.2) can be obtained as:

∆fi = −
1

∆t2 JTk,iCk∑
j

1
mj
‖Jk,j‖2

, (6.6)

with k = impenetrability. By adding up the forces from all constraint iterations
in a time step, we obtain the total collision force fi on each ghost particle. Then,
same as Jang and Park, 2020, we obtain the target pressure p∗ by computing the
component of the force normal to the surface at every ghost particle xi:

p∗(xi) = max
(
−nTi fi, 0

)
, (6.7)

where ni is the outward surface normal. Note that we only consider ghost particles
that are facing the location of the ultrasound array.

The middle image in Fig. 6.3 shows a sample interaction, with ghost particles in
the hand color-coded according to their pressure.

6.2.2 Amplitude-Modulation Rendering

Once the target pressure field is defined, we optimize a set of focal pressure points
and their corresponding pressure, which are commanded to the ultrasound device
for amplitude-modulation rendering. We opt for amplitude modulation instead of
spatiotemporal modulation to accommodate a user-defined perceptual weighting
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Fig. 6.4.: Our rendering algorithm supports perceptual weight maps to favor higher accu-
racy on more sensitive areas of the hand, such as the finger pads. On the left,
we show particles color-coded according to their target pressure; on the right,
we show the weight map. The two optimizations indicate the reconstructed
pressure with and without weight map.

function α(x), as we see next. This function allows us to focus attention on more
sensitive areas of the hand, as shown in Fig. 6.4.

We follow the clustering algorithm presented in Chapter 4, augmented with the
perceptual weighting function. Specifically, we set weights α = 1 at finger pads,
and smoothly decay the weight function based on the distance to the closest finger
pad, following roughly mechanoreceptor densities (Corniani & Saal, 2020).

Our algorithm first finds the locations of focal points through a k-means clustering
problem. We search for the {xk} focal point locations, using the weighted target
pressure α(x) p∗(x):

{xk} = arg min
∑
k

∑
xi∈V or(xk)

α(xi) p∗(xi) ‖xi − xk‖2, (6.8)

where V or(xk) is the Voronoi region of focal point xk. Then, the algorithm com-
putes the rendered pressures {pk} of the focal points, by minimizing the difference
between the target pressure and the reconstructed pressure. This reconstructed
pressure assumes a Gaussian fall-off with standard deviation σ given by the wave-
length of the ultrasound signal.
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pk = arg min
∑

xi∈V or(xk)

(
pk e−

‖xi−xk‖
2

2σ2 − p∗(xi)
)2

⇒

pk =
∑

xi∈V or(xk) p
∗(xi) e−

‖xi−xk‖
2

2σ2∑
xi∈V or(xk) e−

‖xi−xk‖2

σ2

,∀k. (6.9)

The computed focal point positions and pressures are commanded to the ultrasound
device on each rendering frame, resulting on tangible feedback of the user’s
interaction.

6.3 Experiments

We have tested our simulation and rendering methods on two interactive modeling
scenarios. Fig. 6.5 shows a kindergarten table with colorful blocks of modeling clay.
The user deforms, splits and merges the blocks as shown in the images and the
video. Fig. 6.6, on the other hand, shows a potter’s wheel with a block of clay. In this
case, the user interacts with both hands to create a solid of revolution as the wheel
rotates. Both scenes demonstrate the robustness of the clay-like material, which
exhibits the extreme viscoplasticity of real-world clay. We render clay graphically
using a screen-space ellipsoid splatting method. The depth buffer is smoothed
to produce a continuous surface, but some bumpiness and interpenetrations may
appear.

The ultrasound rendering algorithm provides tangible feedback of the interaction.
As shown in Fig. 6.7, this feedback depends on the properties of the clay material.
With a more plastic material, contact forces are smaller under the same user actions,
which turn into lower rendered pressures.

In the kindergarten and pottery scenes, the number of particles is respectively 2 114
and 4 169. The full simulation and tactile rendering runs at approximately 25 fps.
The cost is dominated by the simulation of the clay material (27 ms per frame in
the kindergarten scene, 30 in the pottery scene), while the rendering algorithm
takes only 2 ms per frame. The simulation of the hand takes 6 ms per frame, but it

6.3 Experiments 107



is executed in parallel on a different thread. Within the clay simulation, the cost is
dominated by the elastoplasticity constraint. We use a time step of 1/60, which is
smaller than the actual update rate. This, together with the numerical damping
introduced by the PBF solver, makes the simulated physics appear slightly slower
than real-world physics. All examples were executed on an AMD Ryzen 7 2700
8-core 3.20 GHz PC with 32 GB of RAM and a Nvidia GeForce GTX 1080 Ti GPU
with 11 GB of RAM. For ultrasound rendering, we have used a STRATOS Explore
(USX) device from Ultraleap, running at 40kHz.

6.4 Discussion and Future Work

In this chapter, we have demonstrated a solution for tangible interactive clay
modeling, based on a clay simulation method and an ultrasound-based rendering
algorithm. This work enables novel rich creative experiences, thanks to the robust
handling of extreme viscoplasticity, and to the optimization of the rendering output

Fig. 6.5.: Interactive modeling of colorful clay figures. Our clay model supports robust
viscoplastic deformations, which are key for generating arbitrary stable shapes,
and for merging and splitting material.
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Fig. 6.6.: Tangible modeling of clay on a potter’s wheel. We simulate two-handed interac-
tion with clay, providing a natural hands-on experience.

Fig. 6.7.: Rendered pressures vary depending on the properties of the material. With less
plasticity (right), the material flows less and imposes a higher pressure field on
the hand.
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for arbitrary interactions. Given the working solution, now it is possible to turn the
attention to the investigation of choices and improvements.

We identify three limitations, which could motivate future work. One is the
dominant cost of the elastoplasticity constraint, which may produce 10 to 20
constraints per particle. This cost limits the number of particles in the scene, and
therefore the resolution of the clay material.

Another limitation is the coverage of the amplitude-modulation rendering method.
As evidenced in Fig. 6.4, the quick decay of the focal points prevents matching
large pressure areas on the hand. Nevertheless, the weight map allows us to
focus on perceptually relevant locations. A possible alternative is to investigate
spatiotemporal rendering methods to reach larger coverage (Kappus & Long, 2018;
Korres & Eid, 2016).

Last but not least, the dexterity of the interaction is limited when trying to execute
detailed modeling with the fingers. The reasons are multiple, including the low
resolution of the particles, but probably also the limited fidelity of the tactile
stimulation. We chose ultrasound-based stimulation due to its free-air operation
and ease of use, but it is worth investigating what type of tactile feedback is best
suited to enable dexterous modeling with the fingers.
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Conclusions 7
In the previous chapters, we have presented the technical contributions of this
thesis. This chapter concludes the discussion of the presented works by providing a
general summary of the proposed ideas, their limitations, potential applications
and possible avenues of future work.

7.1 General conclusions

The overall goal of this thesis was to enable physical interaction with rich and
complex virtual phenomena such as fluids. We achieved this in two ways. First, we
developed a novel fluid simulation model that is extremely efficient. This enables
the representation of a wide range of materials in virtual environments. Second,
we developed two rendering methods for the tactile interaction with such media
using modern haptic technology, namely ultrasonic phased arrays.

Chapter 3 focused on the design of the aforementioned model for the efficient
simulation of viscoelastic fluids. Our formulation is based in a constitutive model
for polymeric fluids, which describes the elastic and viscous properties of the
fluid as a function of the time evolution of a conformation tensor. As result, our
method permits the representation of a wide range of materials (ranging from
inviscid to highly viscous or viscoelastic) under one single formulation. Moreover,
our constraint-based approach enables the use of high-performance constrained
dynamics solvers, thus allowing its implementation into interactive scenes. The
development of this work culminated in the publication of the article Conformation
Constraints for Efficient Viscoelastic Fluid Simulation (Barreiro et al., 2017) in the
ACM Transactions on Graphics journal (JCR Q1).

Chapters 4 and 5 are devoted to the development of novel tactile interaction al-
gorithms for ultrasonic phased arrays. In fluid interaction, the activation patterns
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of these displays must be controlled in order to produce a tactile sensation re-
sembling the interactions with the virtual fluid. We achieved this goal by casting
device actuation as a numerical optimization problem, targeting two well estab-
lished high-level control metaphors commonly employed in ultrasound haptics:
amplitude modulation (AM) and spatiotemporal modulation (STM). Given a target
pressure field, we optimize the intensity and locations/trajectories over time of
the ultrasonic foci to find the commands that induce a best-matching pressure
field on the user skin. Thanks to our optimization-based approach, we are also
able to incorporate knowledge of the technical and perceptual limitations of both
control metaphors to maximize the efficacy of our solutions. To our knowledge,
no prior work had addressed the problem of reproducing arbitrary target pressure
distributions following a similar scheme.

This research culminated with a conference presentation and a journal publication.
The AM-based rendering algorithm was presented at the IEEE World Haptics
Conference 2019 under the title Ultrasound Rendering of Tactile Interaction with
Fluids (Barreiro et al., 2019), whereas the STM-based algorithm was published in
the IEEE Transactions on Haptics journal (JCR Q2) under the title Path Routing
Optimization for STM Ultrasound Rendering (Barreiro et al., 2020). The novelty
of the latter work was recognized with the best paper award at the IEEE Haptics
Symposium 2020 conference.

Finally, in Chapter 6 we have proved the applicability of the approaches presented
in this thesis by proposing a computational solution for the interactive simulation of
clay-like materials. For this end, we augmented the model presented in Chapter 3 to
incorporate the characteristic elastoplastic behavior that clay-like materials exhibit.
This model, coupled with a real-time hand simulation and a haptic rendering
algorithm based in the one presented in Chapter 4, enables natural hands-on
manipulation of virtual clay-like materials with unprecedented degree of realism.
This work culminated with a presentation at the IEEE World Haptics Conference
2021 titled Natural Tactile Interaction with Virtual Clay (Barreiro et al., 2021).
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7.2 Discussion and Future Work

Naturally, the approaches presented in this thesis are not devoid of limitations.
However, these reveal the scope of applicability of our methods and unveil new
challenges and possible avenues for future research that might further serve towards
the realization of the virtual reality dream. In this section, we provide a recap
of the limitations of the different methods presented in this thesis and highlight
possible lines of future work.

7.2.1 Simulation of Viscoelastic Fluids

Despite the rich effects achieved with the method presented in Chapter 3 and
the range of materials that can be simulated, there are still some limitations that
suggest interesting future work.

Our work inherits some of the generic limitations of the PBD and PBF approach,
particularly the convergence limitations of Jacobi or Gauss-Seidel solvers. These
convergence limitations are related to the speed at which information propagates
across the simulation domain. Given that relaxation methods are key for an effi-
cient GPU implementation, it would be interesting to explore approaches offering
improved convergence properties.

Recent works (Sommer et al., 2020; H. Wang, 2015) found success in the applica-
tion of more sophisticated methods such as Chebyshev iterations to fluid simulation.
Scheduled Relaxation Jacobi (Islam & Wang, 2020) methods are also interesting
candidates, having gained popularity in recent years due to their simplicity and
efficiency. However, these methods are still in their infancy, and additional research
is necessary to ascertain their suitability to such applications.

Alternatively, it would be interesting to take advantage of the connection between
PBD and minimization formulations of implicit integration to explore higher effi-
ciency optimization algorithms, as done by others after the projective dynamics
method (Bouaziz et al., 2014). However, those optimization algorithms cannot be
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trivially extended to fluids as they make strong connectivity assumptions (Weiler
et al., 2016).

Our method cannot handle large elastic deformations accurately, which would
require storing some explicit measure of rest state. Additionally, while some of
our examples demonstrate the simulation of fine features, the ability to resolve
such fine features is eventually limited by the particle resolution of the simulation.
Fusing codimensional representations (B. Zhu et al., 2015) with constraint-based
viscoelasticity would enable even richer effects under manageable computational
cost.

Furthermore, the stability of our simulation is highly dependent on the choice of
smoothing kernel, as well as how the deficiencies on the free surface are handled.
In practice, we maintain the stability of the simulation by making use of a regu-
larization term that depends on the number of neighboring particles. However,
its parameterization is material-dependent. Exploring the properties of different
smoothing kernels as well as alternative strategies permitting robust treatment of
such deficiencies (e.g. ghost particles or schemes based in neighbourhood proto-
types in the spirit of Solenthaler and Pajarola, 2009 and Alduán et al., 2017) could
also constitute an interesting line of future work.

Our DC-PBD solver might be applicable to other types of constraints beyond those
handled in our work. One such example is friction, which shares a dissipative
nature with viscosity, but incorporates constraints on the deviatoric stress. Another
example is incompressibility. Similar to the divergence-free SPH method by Bender
and Koschier, 2017, incompressibility constraints could be applied on both positions
and velocities within our DC-PBD solver.

Even though our method is parameterized using two physics-based parameters,
it is difficult to design them purely from measurable physical quantities in a
discretization-independent manner. Our model is derived from a constitutive
model for polymeric fluids, and the parameters could be set from geometric and
physical quantities only for such fluids. However, we apply the model to other types
of viscoelastic fluids too, and in that case the model can be regarded as empirical
or phenomenological, and parameters could be estimated from measurements. In
this context, video-guided parameter estimation (T. Takahashi & Lin, 2019) could
prove a useful tool for finding such parameterization. In our examples, we have
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opted for an artist-driven parameter design, which nevertheless proves effective
thanks to the narrow set of parameters.

Finally, another problem of the parameterization is that many details of the consti-
tutive model are reduced to just one parameter, the constraint compliance. This
limits the ability to represent non-Newtonian fluids with complex dependence on
any of these material parameters, e.g., some pseudoplastic fluids.

7.2.2 Ultrasound Rendering of Fluids through Amplitude
Modulation and Spatiotemporal Modulation

While the algorithms presented in Chapters 4 and 5 address the rendering problem
from distinct command metaphor perspectives, both share some limitations that
are consequence of the choices made in modeling the device actuation, as well as
perceptual unknowns of the actuation principle itself.

Both methods assume that the pressure distribution exerted by a focal point is
isotropic and can be approximated by a Gaussian function for the reconstruction
of the resulting pressure field. However, focal points actually exhibit anisotropic
distributions, and are dependent on both their position in space, as well as the
transducer alignment within the ultrasonic phased array. Furthermore, our actu-
ation model does not account for the occurrence of other effects caused by the
device’s technical limitations, such as maximum power distribution across the
working space (and how it is reduced in presence of multiple focal points), the
appearance of grating lobes, or the occurrence of spurious pressure maxima at
locations other than the focal points.

Although researchers are beginning to identify the variables associated with the
perception of AM and STM stimuli, as well as their relationship to wave propagation
in the skin (Reardon et al., 2019), there is still a lack of knowledge regarding the
perceptual effects of fundamental parameters in terms of perceived intensity and
discrimination performance. This is specially important when it comes to STM,
as spatiotemporal characteristics of the stimulus such as traversal speed, phase
and frequency heavily influence perception. Incorporating this knowledge could
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substantially increase the quality of our quasi-static pressure reconstruction model,
allowing for a more careful optimization while improving resource allocation.

Overall, as our methods depend on hand tracking, they are in a good position to
take into account new knowledge about hand skin mechanics and its connection to
ultrasound-based stimulation.

Amplitude Modulation Algorithm

Concerning the limitations of each method, our AM-based algorithm relies on the
premise that pressures at a particular point in space are determined solely by the
closest focal point. However, a more detailed understanding of the device actuation
would require discarding this assumption in order to consider the aggregate effects
of the focal points. Determining the extent to which this knowledge can be
incorporated into an optimization method and developing a solver scheme capable
of fulfilling the performance constraints imposed by haptic applications remains as
future work.

Spatiotemporal Modulation Algorithm

As for our STM-based algorithm, we currently treat path routing as a 2D problem,
whose solution is subsequently un-projected to a 3D path, and we ignore the change
of path length due to this un-projection. The problem admits a more accurate
formulation, accounting for the surface of the hand as a 2D manifold embedded in
3D space; however, the effect of focal point velocity in 3D is an unknown aspect of
STM perception.

The morphology of the paths routed by our algorithm is significantly dependent on
the weights associated with each optimization term. We introduce a bending cost
term in the optimization, as we know that path corners are difficult to distinguish;
however, we do not know how to best weigh this cost, as the sensitivity of STM
perception to changes in direction is unknown.
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We optimize paths for each rendering update independently, without special treat-
ment to path transitions. This approach induces transients with unknown effects,
as moving focal point paths have not been studied yet. Furthermore, we disregard
the impact of relative traversal phases across the different paths. Although their
effect has not been studied yet, we suspect that they have a noticeable effect on
perceived intensity as a result of constructive interference.

We map the rendered pressure to the effective perceived pressure using a heuristic
gain. We use a constant gain, but in reality the mapping depends on the spa-
tiotemporal characteristics of each path and the specific effect produced on the
subject’s skin; effective skin deformation might be a more accurate metric to design
a mapping.

Finally, the implementation of the algorithm relies on the choices of optimal
traversal speed of 7 m/s and minimal frequency of 50 Hz. While these values are
derived from perceptual studies, they can be refined through further experiments
focused on the algorithm.

7.2.3 Natural Interaction with Virtual Clay

To conclude, our solution for tangible interactive clay modeling is susceptible to
improvements. We identify three limitations, which could motivate future work.

One is the dominant cost of the elastoplasticity constraint, which may produce 10
to 20 constraints per particle. This cost limits the number of particles in the scene,
and therefore the resolution of the clay material.

Another limitation is the coverage of the amplitude-modulation rendering method.
The quick decay of the focal points prevents matching large pressure areas on the
hand. Nevertheless, the weight map allows us to focus on perceptually relevant
locations. Incorporating our solution based in spatiotemporal modulation would
help us reach larger coverage.

Last but not least, the dexterity of the interaction is limited when trying to execute
detailed modeling with the fingers. The reasons are multiple, including the low

7.2 Discussion and Future Work 117



resolution of the particles, but probably also the limited fidelity of the tactile
stimulation. We chose ultrasound-based stimulation due to its free-air operation
and ease of use, but it is worth investigating what type of tactile feedback is best
suited to enable dexterous modeling with the fingers.

7.3 Final Remarks

In this thesis, we have presented several highly innovative models and algorithms
that substantially contribute towards the advancement of the state of the art in fluid
simulation and haptic interaction. Their suitability has been demonstrated through
multiple practical cases, enabling user interaction with a variety of interesting fluid
materials.

Given the rapid evolution of VR technologies, its popularization and the ever in-
creasing demand for realistic and sophisticated interaction models, we are confident
that the proposed solutions will be well received both by industry and practitioners,
and therefore will serve as a starting point for further exploration in the field.

Our contributions, however, are not limited to the field of VR; but reach other
industries as well. Such is the case of Next Limit Technologies, a pioneer in the devel-
opment of fluid simulation solutions for VFX. As a result of our direct collaboration
with them for the development of the method presented in Chapter 3, our solution
has been integrated into the Dyverso particle solver (Alduán et al., 2017) included
in the RealFlow package, receiving extraordinarily positive feedback from artists
and technical directors for its efficiency and ability to model diverse materials.

Finally, we are excited about the potential for engagement that future technologies
will provide. The standardization of mechanical models capable of accurately
capturing the behavior of biological soft tissues such as the hand (Verschoor et al.,
2018) will enable a significant improvement in the quality of virtual interactions
and their coupling to other physical phenomena. When this occurs, researchers
will be in a privileged position to develop perceptual models that provide greater
and more reliable information for driving the choices of future tactile rendering
methods.
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This, together with continued advancements in the VR ecosystem’s processing
capabilities and the introduction of new and more powerful machine learning
algorithms capable of handling the ever growing stream of sensory information,
will shape the future of VR and enable previously inconceivable degrees of detail
and realism.
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Resumen A
Las tecnologías de realidad virtual (RV) están comprometidas con el desarrollo
de soluciones que permitan hacer realidad la anhelada visión de crear mundos
sintéticos inmersivos que trasciendan los límites de la realidad. Aunque la RV
se encuentra en el punto más álgido de su historia gracias a la confluencia de
varias tecnologías desarrolladas durante décadas, la diversidad de interacciones
que pueden representarse en las experiencias de RV sigue siendo limitada.

Mientras que la interacción con objetos sólidos y cuerpos deformables ha atraído
una gran atención por parte de los investigadores, otros medios interesantes, como
los fluidos, han sido ignorados en gran medida. En el caso particular de los fluidos,
esto se debe principalmente a una combinación de dos factores. En primer lugar,
los métodos interactivos para la simulación de fluidos son incapaces de representar
materiales que no sean fluidos no viscosos. Esto limita mucho la capacidad de
reproducir elementos cotidianos e interesantes como la miel, la nata montada, la
pintura o la arcilla. En segundo lugar, los dispositivos hápticos convencionales
tienen dificultades para proporcionar un contacto convincente con los medios
fluidos, especialmente en aplicaciones que requieren una manipulación directa.

En esta tesis, investigamos estrategias para superar las limitaciones actuales del
estado del arte con el fin de permitir el contacto físico con fenómenos virtuales
ricos y complejos como los fluidos. Para ello, abordamos este problema desde dos
perspectivas: la primera, mediante el desarrollo de un novedoso modelo de simu-
lación de fluidos extremadamente eficiente, capaz de representar una amplia gama
de materiales en entornos virtuales. La segunda, mediante el desarrollo de métodos
capaces de representar la interacción táctil con dichos medios utilizando tecnología
háptica moderna, como los dispositivos de ultrasonido multielemento. Finalmente,
demostramos la practicalidad de los métodos propuestos y abordamos el reto de
la simulación virtual de la interacción con materiales tipo arcilla, alcanzando un
grado de realismo sin precedentes en la manipulación de materiales que presentan
un comportamiento viscoplástico extremo.
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Proporcionamos un resumen del desarrollo de esta tesis a lo largo de las distintas
secciones de este capítulo: antecedentes, objetivos, metodología, resultados y
conclusiones.

A.1 Antecedentes

A.1.1 Simulación de Fluidos en los Gráficos por
Computador

La simulación de fluidos ha sido uno de los temas de investigación más activos en
el campo de los gráficos por ordenador durante las últimas tres décadas, dando
lugar a una gran cantidad de trabajos dedicados a modelar fenómenos fluidos
atractivos para una amplia variedad de aplicaciones como largometrajes, anuncios
publicitarios, videojuegos o simulación médica.

Sin embargo, a pesar de su amplia aplicación, la simulación de fenómenos fluidos
sigue siendo una tarea difícil. Aunque hoy en día la mecánica de fluidos se
entiende bastante bien, describir numéricamente su comportamiento requiere la
resolución de ecuaciones diferenciales no lineales computacionalmente complejas.
En consecuencia, los investigadores han limitado históricamente sus simulaciones a
la representación de fenómenos superficiales para entornos en los que se requiere
interactividad, relegando la simulación de volúmenes de fluidos a aplicaciones
fuera de línea.

A lo largo de los años, los investigadores se han concentrado en desarrollar cuida-
dosas aproximaciones con el fin de reducir significativamente el coste computa-
cional asociado a la simulación dinámica de tipos específicos de fluidos. Avances
como los esquemas de advección estables y baja disipación, los solvers de dinámica
restringida para garantizar la incompresibilidad de los fluidos o los enfoques numéri-
cos avanzados, como las técnicas multigrid que hacen un sofisticado tratamiento
de las condiciones de contorno, han dado lugar al desarrollo de solucionadores
de dinámica de fluidos de alto rendimiento y alta resolución. Estos avances, junto
con la popularización de las Unidades de Procesamiento Gráfico (GPU) como her-
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ramientas computacionales masivamente paralelas, han permitido el desarrollo de
métodos adecuados para su aplicación en entornos interactivos (Crane et al., 2007;
Macklin & Müller, 2013).

Sin embargo, estos métodos de simulación se han centrado principalmente en la
representación de materiales fluidos newtonianos de baja viscosidad e incompresi-
bles, como el agua. Muchas sustancias cotidianas, como la miel, el ketchup, la nata
montada y la arcilla, presentan comportamientos altamente viscosos, viscoelásticos
o no newtonianos (es decir, cuya viscosidad depende de la tasa de cizallamiento o
del histórico) que no puede reproducirse con dichas formulaciones. Por lo tanto,
para cumplir el objetivo de ampliar las posibilidades de interacción de los fluidos
en la RV, sería interesante encontrar métodos que permitieran la simulación de
tales materiales en tiempo real.

Como es lógico, la simulación de alta viscosidad plantea retos computacionales
adicionales. Se requieren formulaciones implícitas para resolver de forma robusta
las ecuaciones diferenciales numéricamente rígidas que estos materiales plantean.
Además, debido a la dificultad de calcular la deformación del fluido, únicamente
podemos aspirar a aproximarla, lo que resulta en deriva numérica y se traduce
en una pérdida perceptible de viscoelasticidad. Algunos trabajos han explorado
el modelado de materiales de viscosidad moderada a alta para aplicaciones inter-
activas (Alduán et al., 2017; Macklin & Müller, 2013; T. Takahashi et al., 2016;
T. Takahashi et al., 2014). Sin embargo, se limitan a modelar la viscosidad new-
toniana, y no logran alcanzar un comportamiento viscoso extremo sin introducir
artefactos en forma de deriva excesiva u oscilaciones elásticas no deseadas.

A.1.2 Renderizado Háptico Aéreo

Aunque nuestros sentidos nos permiten percibir y comprender distintas aspectos
de la realidad en la que vivimos, el tacto es el único sentido que nos une al mundo.
Permite al ser humano relacionarse con su entorno y manipularlo físicamente,
revelando características de los objetos que no suelen ser discernibles a través
de otros sentidos: forma, rígidez, rugosidad, textura o calor, por ejemplo. Sin
embargo, su estudio y comprensión (háptica) está muy por detrás del grado de
comprensión de otros sentidos como la vista o el oído.
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En consonancia con el actual renacimiento de la realidad virtual (RV), los dis-
positivos hápticos (es decir, la tecnología capaz de estimular el sentido del tacto)
también han crecido rápidamente en popularidad debido a los importantes ben-
eficios que aportan a la experiencia de la interacción persona-ordenador (HCI).
Como resultado, hemos asistido a la aparición de nuevas tecnologías hápticas que
emplean diversos principios de actuación para permitir un tacto virtual convincente
directamente con nuestras manos.

Las pantallas hápticas aéreas son un ejemplo prometedor de estas tecnologías
emergentes. Las pantallas volumétricas, junto con las tecnologías de seguimiento
de las manos, permiten liberar a los usuarios de las limitaciones de otras tecnologías
de renderizado, como las superficies de contacto o los dispositivos portátiles,
al tiempo que amplían considerablemente su espacio de trabajo. Aunque los
investigadores han desarrollado pantallas basadas en diversos fenómenos físicos
(por ejemplo, flujos de aire (Tsalamlal et al., 2014), láseres (Ochiai et al., 2016)
o arcos eléctricos (Spelmezan et al., 2016)), las basadas en equipos ultrasónicos
multielemento (Hoshi et al., 2010; Long et al., 2014) son las que han ganado más
popularidad en los últimos años gracias a su baja latencia, gran tamaño de los
estímulos y amplio espacio de trabajo (Frier, 2020).

Sin embargo, la generación de percepciones táctiles con estos dispositivos sigue
siendo un proceso en gran medida desconocido debido a la ausencia de un mod-
elo computacional que mapee los patrones de activación a la percepción. Los
investigadores se han centrado principalmente en la representación de objetos
holográficos, desarrollando diferentes metáforas de alto nivel para comandar estos
dispositivos con tales fines. Sin embargo, estas metáforas de mando son insufi-
cientes por sí solas para representar las interacciones con fluidos.

Cuando interactuamos con fluidos, nuestra piel está sometida a un campo de
presión temporal y espacialmente variable cuyas características vienen determi-
nadas por nuestro movimiento y las propiedades inherentes al flujo. Por ello, la
interacción táctil con estos medios utilizando háptica ultrasónica podría plantearse
como el problema de reproducir dinámicamente un campo de presión en la piel
del usuario. Hasta la fecha, ninguna metáfora de mando goza de la capacidad de
reproducir directamente un campo de presión arbitrario que varía espacialmente.
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A.1.3 Acoplando Fluidos y Hápticos

La representación háptica de la interacción con fluidos ha recibido gran atención
por parte de los investigadores. Los distintos métodos existentes abordan el reto de
ejecutar simulaciones interactivas de fluidos y proponen diferentes estrategias de
acoplamiento entre el dispositivo háptico y el medio simulado.

Tradicionalmente, la mayoría de los trabajos que abordan el renderizado de medios
fluidos giran en torno al uso de dispositivos similares a herramientas (Baxter &
Lin, 2004; Dobashi et al., 2006; Mora & Lee, 2008). La llegada de las GPU como
plataformas de cálculo ha permitido la aplicación de métodos interactivos más
ricos. Yang et al. (2009) aprovechó esta tecnología e implementó métodos para
acumular las fuerzas de interacción directamente en la GPU. Cirio, Marchal, Otaduy,
et al. (2013) realizó una simulación del fluido basada en partículas en la GPU y
utilizó un método de acoplamiento virtual para transferir la interacciones entre el
fluido y la herramienta al dispositivo háptico.

La representación de la interacción táctil con entornos virtuales (incluidos los
fluidos) mediante dispositivos hápticos ultrasónicos puede formularse como un
problema de reproducción dinámica de un campo de presión en la piel del usuario.
Sin embargo, ninguna de las metáforas de comandado existentes por sí solas
sastifacen las necesidades de este problema, ya que no son capaces de reproducir
un campo de presión espacialmente variable.

A.1.4 Simulación de Arcilla Virtual

La arcilla es un material viscoplástico cuyo comportamiento se asemeja tanto a un
sólido como a un fluido. Presenta enlaces materiales microscópicos que preservan
la forma, pero estos enlaces son frágiles y el material fluye incluso bajo pequeñas
tensiones, aunque con una viscosidad muy alta. Debido a esta complejidad, la
simulación de la arcilla es un problema computacionalmente difícil, y los méto-
dos interactivos existentes apenas aproximan a su verdadero comportamiento.
Si bien varios trabajos han tratado de modelar parcialmente la arcilla en sus
diferentes modalidades para aplicaciones de RV, incluyendo retroalimentación
háptica (Chaudhury & Chaudhuri, 2014; Dewaele & Cani, 2003; Han et al., 2007;

A.1 Antecedentes 137



Krause & Lüddemann, 1997; Lee et al., 2008; McDonnell et al., 2001; Pihuit
et al., 2008), ningún método de simulación interactiva anterior reproduce el flujo
altamente viscoso y la fractura dúctil de los materiales arcillosos.

A.2 Objetivos

El objetivo general de esta tesis es permitir la interacción física con fenómenos
virtuales ricos y complejos como los fluidos. Este objetivo general se materializa
a través de dos interesantes retos: la creación de modelos novedosos para la
simulación de fluidos viscoelásticos y viscoplásticos adecuados para la interacción
en tiempo real, y el desarrollo de diversos algoritmos de renderizado háptico que
permitan a los usuarios interactuar de forma natural con este tipo de medios.

A.3 Metodología

Para la realización de esta tesis hemos seguido la siguiente metodología:

A.3.1 Revisión Bibliográfica

Con el fin de entender el alcance del problema que aborda la tesis, hemos llevamos
a cabo un exhaustivo análisis bibliográfico en materia de simulación de fluidos y
renderizado háptico. Dicho análisis se recoge en el Capítulo 2. No obstante, dado
el enorme cuerpo bibliográfico dedicado a estas materias, es imposible cubrir con
gran nivel de detalle todos los trabajos relacionados en unas pocas páginas. Es por
ello que en dicho capítulo nos centramos principalmente en aquellos trabajos que
sirven de base para el desarrollo de esta tesis.

Comenzamos con la identificación de los trabajos más relevantes en simulación
de fluidos, analizando las numerosas estrategias típicamente empleadas en la
literatura de gráficos por computador, al tiempo que nos centramos en aquellos
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enfoques que permiten la simulación de dinámica de fluidos de alto rendimiento.
A continuación, estudiamos las particularidades y consideraciones necesarias para
la simulación de medios más interesantes, enfatizando en aquellos trabajos que
abordan la simulación de materiales fluidos viscoelásticos.

Tras identificar y abordar el modelado de dicho tipo de materiales, revisamos la
literatura al respecto del renderizado háptico, haciendo especial hincapié en las
tecnologías que pudieran servir para alcanzar nuestro objetivo de reproducir la
interacción con dichos medios, como los dispositivos de ultrasonidos multiele-
mento. Tras estudiar y comprender los conceptos y principios fundamentales que
subyacen a estas tecnologías, estudiamos las técnicas que permiten su comandado,
limitaciones e implicaciones perceptivas.

Finalmente, estudiamos las posibles aplicaciones de los métodos desarrollados,
identificando así el modelado de materiales tipo arcilla como una prometedora
aplicación.

A.3.2 Estudio y Desarrollo de un Modelo de Simulación de
Fluidos Viscoelásticos

Analizando el estado del arte en modelado de fluidos de alto rendimiento, ob-
servamos que no existía ningún modelo que resolviera el tratamiento de fluidos
extremadamente viscosos y viscoelasticos de forma satisfactoria.

En el Capítulo 3 de esta tesis, abordamos este reto y proponemos un método
para la simulación de fluidos altamente viscosos y viscoelásticos que es adecuado
para aplicaciones interactivas. La clave de su alto rendimiento reside en el uso
de solvers de dinámica restringida como Position-based Dynamics (PBD) como
alternativa a las formulaciones implícitas para describir estos materiales. Nuestra
solución se inspira en un modelo constitutivo de fluidos poliméricos (es decir,
fluidos en los que se disuelven polímeros elásticos), que admite una amplia gama
de comportamientos de viscoelasticidad bajo una formulación común.

Tras diseñar e implementar nuestro método, llevamos a cabo un análisis de su
parametrización, estabilidad y posibles deficiencias. Como fruto de este análisis
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se llevó a cabo el desarrollo de un método de resolución de dinámica doblemente
restringida (al que bautizamos como DC-PBD), que hereda la robustez y eficiencia
del método PBD original, pero muestra una estabilidad mejorada bajo restricciones
basadas en la velocidad como las de nuestra formulación, especialmente con
grandes pasos de tiempo.

Finalmente, estudiamos su aplicación y generamos las diversas secuencias que
demuestran su rango de aplicabilidad.

A.3.3 Estudio y Desarrollo de Algoritmos de Renderizado
Táctil

Tras la elección de los dispositivos de ultrasonidos multielemento como potencial
candidato para reproducir la interacción con fluidos virtuales, pasamos a abordar
el problema de comandar su actuación para proporcionar una sensación similar a
las interacciones virtuales.

En los Capítulos 4 y 5 abordamos este problema introduciendo dos algoritmos de
renderizado que mapean dinámicamente campos de presión arbitrarios a metáforas
de control de modulación en amplitud (AM) y modulación espaciotemporal (STM)
respectivamente. Nuestros enfoques plantean este mapeo como problemas de
optimización que tienen en cuenta las limitaciones perceptivas y técnicas conoci-
das de ambos métodos, dando como resultado el comandado óptimo que mejor
reconstruye las presiones a evaluadas en la simulación.

Cronológicamente, el primer método desarrollado fue el basado en AM debido a su
simplicidad. En dicho momento la actuación basada en STM planteaba múltiples
incógnitas perceptuales relacionadas con la existencia de un componente temporal
en la actuación cuyas variables apenas se habían comenzado a comprender. Tras
implementar un método de simulación de medios gaseosos y explorar las diferentes
estrategias de optimización, alcanzamos la que sería nuestra estrategia final. Tras
ello realizamos un estudio cuantitativo de los diferentes parámetros afectando la
reconstrucción y procedimos a la generación de los casos de demostración.
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En este lapso de tiempo, el conocimiento sobre los métodos STM avanzó, diluci-
dando así la relación entre dicha metáfora de mando, la propagación de ondas en
la piel y alguna de sus claves perceptuales. Tras reproducir los resultados de los
trabajos que abarcaban dichas relaciones, identificamos los criterios que posterior-
mente darían lugar a nuestra asunción de persistencia, que nos permitiría alcanzar
soluciones computacionalmente eficientes al asumir que durante un breve lapso de
tiempo las presiones ejercidas son equivalentes a las de un campo cuasi-estático.
Tras diseñar, implementar y analizar diferentes estrategias, obtuvimos nuestra
estrategia de optimización en dos pasos. Hecho esto, llevamos a cabo un estudio
perceptual para determinar su rendimiento con respecto a nuestro método anterior,
demostrando así su superioridad en tareas de discriminación. Finalmente, llevamos
a cabo la generación de los casos de demostración empleando el mismo método de
simulación que en el caso del algoritmo basado en AM.

A.3.4 Estudio e Implementación de Métodos para la
Interacción Natural con Arcilla

Finalmente, tras haber desarrollado independientemente los diferentes métodos
para la simulación e interacción fluidos, estudiamos las posibles aplicaciones que
permitieran aunarlos de forma práctica. Entre las diferentes opciones, elegimos la
representación de materiales altamente viscoplásticos como la arcilla por su interés
como caso representativo de manipulación diestra en entornos virtuales.

En el Capítulo 6 proponemos un modelo de simulación que permite al usuario
conformar, dividir y fusionar la arcilla virtual de forma muy similar a la del mundo
real. Nos basamos en una versión simplificada del método presentado en el
capítulo Capítulo 3, extendida con un modelo de elastoplasticidad para capturar las
principales características de los materiales arcillosos. Acoplamos este método con
un modelo existente de simulación de mano natural para lograr un acoplamiento
bidireccional, y utilizamos las fuerzas de interacción resultantes para comandar un
algoritmo de renderizado táctil basado en el método presentado en el Capítulo 4.
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A.4 Resultados

Las principales contribuciones de esta tesis pueden resumirse de la siguiente
manera:

• En el Capítulo 3 introducimos un modelo de viscoelasticidad basado en re-
stricciones. Describimos un modelo constitutivo de viscoelasticidad en fluidos
poliméricos, que es la contraparte basada en tensión de nuestras restric-
ciones. Tras esto, describimos la derivación de las restricciones implícitas de
conformación que actúan sobre las velocidades de los fluidos, así como los
parámetros de nuestro modelo.

• En el Capítulo 3 proponemos un método de resolución de dinámica doble-
mente restringida (DC-PBD), que hereda la robustez y eficiencia del método
PBD original, pero muestra una estabilidad mejorada bajo restricciones
basadas en la velocidad como las de nuestra formulación, especialmente
con grandes pasos de tiempo.

• En el Capítulo 3 discutimos la aplicación fenomenológica de nuestro enfoque
a la representación de una variedad de materiales que van desde altamente
viscosos a viscoelásticos, así como los detalles prácticos de implementación
para lograr simulaciones de alto rendimiento, minimizando los artefactos
numéricos que resultan en disipación cinética no deseada.

• En el Capítulo 4 introducimos un algoritmo eficiente para la representación
de la interacción táctil con los fluidos empleando ultrasonidos, basado en la
metáfora de mando de modulación en amplitud (AM). Caracterizamos la ac-
tuación del dispositivo mediante un conjunto de puntos focales, optimizando
la ubicación e intensidad de dichos puntos para aproximar lo mejor posible un
campo de presiones sobre la piel. La clave de la eficacia de nuestra solución
es la suposición de que la presión en un punto del espacio depende única-
mente del punto focal más cercano, lo que permite desacoplar la ubicación e
intensidad en problemas de optimización separados. El método resultante
produce una experiencia convincente mientras se interactúa dinámicamente
con el fluido virtual.
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• En el Capítulo 5 proponemos otro algoritmo de renderizado eficiente, esta
vez basado en la metáfora de la modulación espacio-temporal (STM), que
caracteriza la actuación del dispositivo a través del control de las trayectorias
de los puntos focales. Proponemos una optimización a dos niveles (global y
local) para renderizar la distribución de fuerzas resultante de una interacción
virtual dinámica. Un aspecto clave de nuestro método es plantear el ren-
derizado STM como un problema cuasi-estático, eliminando así la variable
temporal de cada actualización de renderizado dinámico y consiguiendo que
el problema sea computacionalmente manejable.

• En el Capítulo 5 también se compara la calidad de la reconstrucción del
método con respecto al algoritmo presentado en el Capítulo 4 observando
que nuestro algoritmo basado en STM consigue proporcionar una cobertura
mayor y más suave que el método basado en AM, a la vez que muestra un
rendimiento superior en las tareas de discriminación.

• Por último, en el Capítulo 6, proponemos una solución computacional para
la simulación interactiva de materiales similares a la arcilla con un realismo
sin precedentes, junto con una representación táctil que proporciona una
experiencia tangible natural. Nuestra solución amplía los métodos propuestos
en Capítulos 3 y 4 al incluir un novedoso modelo de elastoplasticidad y una
formulación del problema de optimización que considera una serie de pesos
perceptuales a la hora de determinar la solución. Nuestro algoritmo toma
como entrada las fuerzas de interacción entre un modelo de mano virtual y
el material similar a la arcilla. Demostramos la eficacia de nuestro método
mediante supuestos creativos.

A.5 Conclusiones

En el Capítulo 7 presentamos las conclusiones generales y específicadas de cada
uno de los métodos propuestos en esta tesis, así como sus limitaciones y posibles
líneas de investigación futuras.
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El objetivo general de esta tesis era permitir la interacción física con fenómenos
virtuales ricos y complejos como los fluidos. Lo hemos conseguido de dos maneras.
En primer lugar, desarrollando un novedoso modelo de simulación de fluidos que es
extremadamente eficiente, permitiendo la representación de una amplia gama de
materiales en entornos virtuales. En segundo lugar, desarrollando varios métodos
capaces de representar la interacción táctil con dichos medios utilizando tecnología
háptica moderna, como los dispositivos ultrasónicos multielemento.

En el Capítulo 3 nos centramos en el diseño del citado modelo para la simulación
eficiente de fluidos viscoelásticos. Nuestra formulación se basa en un modelo
constitutivo para fluidos poliméricos, que describe las propiedades elásticas y vis-
cosas del fluido en función de la evolución temporal de un tensor de conformación.
Como resultado, nuestro método permite la representación de una amplia gama
de materiales (desde invisibles hasta altamente viscosos o viscoelásticos) bajo una
única formulación. Además, nuestro enfoque basado en restricciones permite el uso
de solucionadores de dinámica restringida de alto rendimiento, lo que permite su
implementación en escenas interactivas. El desarrollo de este trabajo culminó con
la publicación del artículo Conformation Constraints for Efficient Viscoelastic Fluid
Simulation (Barreiro et al., 2017) en la revista ACM Transactions on Graphics
(JCR Q1).

Los Capítulos 4 y 5 están dedicados al desarrollo de novedosos algoritmos de
interacción táctil para tecnologías hápticas emergentes como los dispositivos ultra-
sónicos multielemento. En la interacción con fluidos, los patrones de activación
de estos dispositivos deben ser controlados para producir una sensación táctil que
se asemeje a las interacciones con el fluido virtual. Conseguimos este objetivo
planteando la actuación como un problema de optimización numérica, centrán-
donos en dos metáforas de control de alto nivel: la modulación en amplitud (AM)
y la modulación espaciotemporal (STM). Optimizando la intensidad y las ubica-
ciones/trayectorias de los focos ultrasónicos a lo largo del tiempo, encontramos
el conjunto de variables de control que producen la distribución de presiones en
la piel que mejor se ajusta a las extraídas de la simulación. Además, y gracias a
nuestro enfoque basado en optimización, también somos capaces de incorporar el
conocimiento de las limitaciones técnicas y perceptuales de ambas metáforas de
control para así maximizar la eficacia de nuestras soluciones. Hasta donde sabe-
mos, ningún trabajo anterior había abordado el problema siguiendo un esquema
similar.
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Esta investigación culminó con una presentación en una conferencia y una pub-
licación en una revista. El algoritmo de renderizado basado en AM se presentó
en la IEEE World Haptics Conference 2019 bajo el título Ultrasound Rendering
of Tactile Interaction with Fluids (Barreiro et al., 2019), mientras que el algoritmo
basado en STM fue publicado en la revista IEEE Transactions on Haptics (JCR
Q2) bajo el título Path Routing Optimization for STM Ultrasound Rendering (Barreiro
et al., 2020). La novedad de este último trabajo fue reconocida con el premio a la
mejor ponencia en el congreso IEEE Haptics Symposium 2020.

Finalmente, en el Capítulo 6 hemos demostrado la aplicabilidad de los métodos
presentados en esta tesis abordando la simulación virtual de la interacción con
la arcilla. Para ello, hemos extendido el modelo presentado en el Capítulo 3
para incorporar el comportamiento elastoplástico característico que presentan los
materiales arcillosos. Este modelo, junto a una simulación de mano en tiempo real
y un algoritmo de renderizado háptico basado en el presentado en el Capítulo 4,
permite la manipulación natural de materiales virtuales similares a la arcilla con un
grado de realismo sin precedentes. Este trabajo ha culminado con una presentación
en el congreso IEEE World Haptics 2021 bajo el título Natural Tactile Interaction
with Virtual Clay (Barreiro et al., 2021).

En términos generales, hemos presentado varios modelos y algoritmos altamente
innovadores que contribuyen sustancialmente al avance del estado del arte en la
simulación de fluidos y la interacción háptica. Su idoneidad se ha demostrado a
través de múltiples casos prácticos que permiten la interacción de los usuarios con
una variedad de materiales fluidos interesantes.

Dada la rápida evolución de las tecnologías de RV, su popularización y la demanda
cada vez mayor de modelos de interacción realistas y sofisticados, confiamos en
que las soluciones propuestas serán bien recibidas tanto por la industria como por
los profesionales y, por tanto, servirán de punto de partida para seguir explorando
en este campo.

Sin embargo, nuestras aportaciones no se limitan al campo de la RV, sino que
llegan también a otras industrias. Tal es el caso de Next Limit Technologies, pio-
nera en el desarrollo de soluciones software para la simulación de fluidos para
efectos especiales (VFX). Como resultado de nuestra colaboración con ellos, uno
de nuestros trabajos, concretamente el método descrito en el Capítulo 3, ha sido
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integrado en el solucionador de partículas Dyverso (Alduán et al., 2017) incluido
en el paquete RealFlow, recibiendo comentarios extraordinariamente positivos de
artistas y directores técnicos.

Por último, estamos expectantes ante el potencial de inmersión en mundos virtuales
que ofrecerá la tecnología del futuro. La estandarización de modelos mecánicos
capaces de capturar con precisión el comportamiento de los tejidos blandos bi-
ológicos como la mano (Verschoor et al., 2018) permitirá una mejora significativa
de la calidad de las interacciones en los mundos virtuales y su acoplamiento con
otros fenómenos físicos. Cuando esto ocurra, los investigadores estarán en una
posición privilegiada para desarrollar modelos perceptivos que proporcionen una
información mayor y más fiable para dirigir las elecciones de los futuros métodos
de renderizado táctil. Esto, junto con los continuos avances en las capacidades de
procesamiento del ecosistema de la RV y la introducción de nuevos y más potentes
algoritmos de aprendizaje automático capaces de manejar el flujo cada vez mayor
de información sensorial, configurará el futuro de la RV y permitirá grados de
detalle y realismo antes inconcebibles.
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